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Abstract
It is widely accepted that the Milky Way Galaxy resides within a massive dark matter halo. The

mass and cumulative mass profile of this halo (and the Galaxy as a whole) are two of the most funda-
mental properties of the Galaxy. Estimating these properties, however, is not a trivial problem. We
rely on the kinematic information of satellites which orbit the Galaxy, such as globular clusters and
dwarf galaxies, and this data is incomplete and subject to measurement uncertainty. In particular,
the complete 3D velocity and position vectors of objects are sometimes unavailable, and there are
selection biases due to the distribution of objects around the Galaxy and our measurement position.
On the other hand, the instrumental uncertainties of telescopes that collect this data is fairly well
understood. Thus, we would like to incorporate these uncertainties into our estimate of the Milky
Way’s mass. The Bayesian paradigm offers a way to deal with both the missing kinematic data and
measurement errors using a hierarchical model.

Key Words: Bayesian, astrostatistics, astronomy, astrophysics, incomplete data, Galaxy mass
profiles, dark matter, hierarchical

1. Introduction

The universe is filled with galaxies of various sizes and morphological types, including
disk-shaped spirals, giant ellipticals, and dwarfs, as well as irregular galaxies with no dis-
cernible patterns. Despite the visible differences between galaxies, however, it is strongly
believed that all galaxies have one thing in common: they each reside in their own massive,
invisible, dark matter (DM) halo. Although DM has yet to be detected directly (its com-
position is still unknown), there is mounting evidence to support the idea of this missing,
unseen mass both in galaxy clusters and galaxies.

Some of the first evidence for DM dates back to work by Zwicky (1933, 1937), who
looked at the dynamics of galaxies in the Coma Cluster. By applying the virial theorem,
Zwicky found the mass of the cluster to be much larger than what was implied by the
luminous matter contained therein. Another famous paper by Rubin et al. (1980) showed
that the orbital velocities of stars in spiral galaxies are too large if the only gravitational
forces acting on them are from visible matter. Gravitational lensing around galaxy clusters
also suggests the presence of DM; distant background galaxies are seen as distorted, lensed
arcs around galaxy clusters. Another indication of DM in galaxy clusters comes from
analysing X-ray images of the intracluster gas. Finally, cosmological simulations of the
universe require DM for regular (baryonic) matter to properly collapse and coalesce into
the galaxies we see today.

Barring that general relativity is incorrect, it seems that DM is necessary for describing
not only the overall evolution of the universe, but also the dynamical behaviour of objects
we observe today. Thus, estimating the mass and cumulative mass profiles of the DM halos
of galaxies is incredibly important if we are to understand the nature of DM and its role in
galaxy formation.
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Estimating the Milky Way’s mass profile is a great place to start; the Galaxy is a typical
spiral with many natural satellites (such as dwarf galaxies and globular clusters) orbiting
under the influence of gravity. Using the positions and velocities of these satellites, and
assuming a model for the gravitational potential, one can infer the mass of the DM halo
responsible for the tracers’ orbits. This basic idea has been utilized in different ways under
both frequentist and Bayesian methods for many years (for example, Bahcall and Tremaine
1981; Little and Tremaine 1987; Wilkinson et al. 2003; Battaglia et al. 2005; An and Evans
2011; Boylan-Kolchin et al. 2013). However, one drawback associated with using satellites
as tracers of the DM halo remains: the 3-dimensional velocities of satellites are critical to
the analysis, but they are not always available.

The 3-dimensional velocity vector of a satellite is split up into two components: 1) the
1-dimensional line-of-sight velocity, which is measured along the line-of-sight between the
Earth and the satellite, and 2) the 2-dimensional proper motion µ, which is measured on
the plane of the sky. While measurements of the former are easily obtained, measuring
the latter often requires years of observation. Subsequently, more than half of the satellites
around the Milky Way are missing proper motion measurements, making these data points
incomplete. Previous studies have dealt with this problem by either a) using only the line-
of-sight measurements, or b) using only satellites for which proper motions have already
been measured. Either way, information contained within the available data is being thrown
away.

Eadie et al. (2015) addressed the problem of incomplete data by introducing a Bayesian
method that estimates the mass and cumulative mass profile of the Milky Way using com-
plete and incomplete data simultaneously. In their preliminary study, they assumed a
simple, spherical DM halo by applying the Hernquist (1990) model, and used kinematic
data from 24 dwarf galaxies and 64 globular clusters. They found the mass of the Milky
Way within 260 kpc to be 1.37 × 1012M� with a 95% credible interval of (1.27, 1.51) ×
1012M�. Their results, which fall within the range of masses found by many other studies
that use different methods, suggest further development of the method is worthwhile (for a
list of results from other studies, see Wang et al. 2015).

The author’s goal is to improve upon the method in Eadie et al. (2015) by incorporating
the measurement uncertainties associated with the line-of-sight velocities and proper mo-
tions. In the current proceedings, we discuss this next step, and show some very preliminary
results using the same data as in the aforementioned paper.

2. Terminology and Models

Before presenting details about how we include measurement uncertainties in a Bayesian
analysis, it is important to distinguish between the Heliocentric and Galactocentric refer-
ence frames. The Heliocentric coordinate system is centered around the Sun, whereas the
Galactocentric coordinate system has its origin at the center of the Galaxy. The notation
used for the distance from the Earth to the satellite in the Heliocentric frame is R, whereas
the distance from the center of the Galaxy to the satellite in the Galactocentric frame is r.

We would also like to emphasize that the terms line-of-sight velocity (vlos) and proper
motion (µ1), have different meanings than two other terms commonly used in the literature:
the radial velocity (vr) and tangential velocity (vt). Whereas vlos and µ refer to velocities
in the Heliocentric reference frame, vr and vt refer to velocities in the Galactocentric ref-
erence frame. In the Galactocentric reference frame, vr is along the line-of-sight from the

1We emphasize that µ here is not the mean of a distribution, but the 2-dimensional velocity vector. Using
µ in this way is the convention in astrophysics literature.
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centre of the Galaxy to the object, and vt is perpendicular to vr in the same way that µ is
perpendicular to vlos.

Another point of note is that the proper motion is split up into two components: µδ, the
velocity in declination δ (north or south of the celestial equator), and µα cos δ, the velocity
in right ascension α (east or west from the vernal equinox2).

Almost all Galactic models are mathematically simpler in the Galactocentric reference
frame, and require kinematic data in the form (r, vr, vt). However, transforming velocities
from the Heliocentric to the Galactocentric frame is complicated and non-linear— one must
take into account the motion of the Sun around the Galaxy, the rotation of the Galactic
disk, the object’s distance from the Sun, and the object’s coordinates on the sky (α, δ).
Furthermore, the transformation can only be completed when both vlos andµ of the satellite
are known.

Eadie et al. (2015) used kinematic data of satellites that had already been transformed
to the Galactocentric frame, and assumed (r, vr, vt) as fixed and known. Consequently,
they had to make approximations of vr for satellites without proper motion measurements,
i.e. satellite data that was incomplete could only be used if it satisfied certain geometric
conditions (see Eadie et al. 2015). Through a sensitivity analysis they also showed that
uncertainties in vr and vt may contribute up to half of the model uncertainty. Thus, our
next goal is to not only limit the geometric condition, but to also include the measurement
uncertainties in the analysis.

The measurement uncertainties (∆vlos, ∆µδ, ∆µα cos δ) are very well understood by
astronomers. However, transforming these uncertainties to the Galactocentric reference
frame is non-linear and difficult, and the resulting uncertainties in the ∆vr, and ∆vt will
be dependent and non-Gaussian. In the Bayesian paradigm, it is easier to incorporate mea-
surement uncertainties that are independent and normally distributed. Therefore, we will
work in the Heliocentric reference frame so we may use ∆vlos, ∆µδ, and ∆(µα cos δ),
which are independent and approximately Gaussian.

3. Methods, Models, and Data

3.1 Methods: Incorporating Measurement Uncertainty in the Bayesian Framework

A measurement of a random variable such as vlos or µδ is inherently uncertain, and this is
precisely why measurement uncertainties are reported. The measurement uncertainties sig-
nify that we do not know the true value of a quantity. Therefore, we now treat the quantities
(r, vlos, µδ, µα cos δ) as data drawn from a distribution centered on the parameters (r, vlos,
µδ, µα cos δ). We assume that the data are normally distributed about their corresponding
parameter values, with standard deviation equal to the measurement uncertainty. That is,
σR = ∆R, σvlos = ∆vlos, σµδ = ∆µδ and σµα cos δ = ∆µα cos δ. The likelihood is then

L = p(r|r,∆r)p(vlos|vlos,∆vlos)p(µδ|µδ,∆µδ)p(µα cos δ|µα cos δ,∆µα cos δ) (1)

where the blue characters denote parameters and the red characters denote the known mea-
surement uncertainties.

In equation 1, note that we are treating the Galactocentric distance r, not the Heliocen-
tric distance R, as a parameter. Measurement uncertainties for R exist, but incorporating
them is much more difficult. The transformation matrix necessary to change a satellite’s
velocity v =< vlos,µ > to the Galactocentric frame requires the R value of the satellite,
as well as the distance of the Sun from the center of the Galaxy, R�. For simplicity’s sake,
and to avoid having to recalculate the transformation matrix at every step in the Markov

2The factor of cos δ comes from spherical symmentry.
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Chain, for every satellite, we fix R for each satelltie and treat R� as a known constant. We
do, however, assign an uncertainty of ∆r = 10% for each satellite’s r value. In future work
we plan to allow R and R� to vary as parameters instead of r (although we expect it to be
much more computationally expensive).

The likelihood in equation 1 is used in a hierarchical Bayesian model,

p(θ|r, vlos, µδ, µα cos δ,∆) ∝ L(r, vlos, µδ, µα cos δ,∆|ϑ)p(h(ϑ)|θ)p(θ) (2)

where ∆ is the vector of known uncertainties, ϑ represents the parameters (r, vlos, µδ, µα cos δ)
in equation 1, and h is the transformation function to go from the Heliocentric to the Galac-
tocentric reference frame. The transformation of Heliocentric velocities to Galactocentric
ones follows the method outlined in Johnson and Soderblom (1987), but with updated val-
ues for the J2000 epoch. The term p(h(ϑ)|θ) in equation 2 is the probability density func-
tion for the Galaxy model, given a vector of parameters θ. In the case of havingN satellites,
equation 2 is written more compactly as

p(θ|y,∆) ∝
N∏
i

L(yi,∆i|ϑi)p(h(ϑi)|θ)p(θ). (3)

Eadie et al. (2015) showed how a hybrid-Gibbs sampler is used to treat the unknown
vt’s as parameters in the model. They constructed Markov chains that were proportional to
the posterior distribution

p(θ|y) ∝
N∏
i

p(ri, vr,ivt,i|θ)p(θ) (4)

We continue to use the hybrid-Gibbs sampling, but instead extend it to sampling the pa-
rameters ϑ and hyperparameters θ in equation 3. In this way, the method has gone from a
basic Bayesian model to a hierarchical Bayesian model.

3.2 Model: Hernquist probability density function

To test the hierarchical method outlined above and for easy comparison of results, we use
the same Galaxy model and the same data as Eadie et al. (2015). In the previous paper,
the model from Hernquist (1990) is used in three different forms, corresponding to three
different velocity anisotropies. Here, we focus on the isotropic case.

The Hernquist model is a self-consistent model of a spherical mass distribution with a
gravitational potential

Φ(r) = − Mtot

r + a
(5)

and mass density profile

ρ(r) =
aMtot

2πr (r + a)3
(6)

where Mtot is the total mass of the system, and a is the scale radius. The Hernquist cumu-
lative mass profile is found by integrating equation 6, and is given by

M(r) = Mtot
r2

(r + a)2
. (7)

The probability density function (pdf) for the Hernquist model was found and presented
by Hernquist (1990). In general, armed with a gravitational potential and mass density pro-
file, one can follow the mathematical framework outlined in Binney and Tremaine (2008)
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to derive the pdf for the position r and velocity v of a particle in a such a model:

f(E) =
1√
8π2

ˆ E
0

1√
E − ψ

(
d2ρ

dψ2

)
dψ +

1√
E

(
dρ

dψ

)
ψ=0

, (8)

where E is the energy per unit mass,

E(r, vr, vt) = −v
2
r + v2t

2
+ Ψ(r) (9)

and where Ψ(r) is the relative gravitational potential. Satellites that are not gravitationally
bound to the Galaxy have E ≤ 0, and in this case f(E ≤ 0) ≡ 0.

Equation 8 is for a special case in which the particles in the model have an isotropic
velocity dispersion. When the model has an anisotropic distribution of velocities, then the
pdf is a function of both E and the angular momentum per unit mass L = rvt (Binney and
Tremaine 2008). Finally, the pdf must also satisfy the condition that

ˆ
f(r, v)d3rd3v = 1. (10)

It should also be noted that in the physics and astronomy literature, f is sometimes referred
to simply as the distribution function (DF) (e.g. see Binney and Tremaine 2008). The
isotropic Hernquist DF is what we use as the term p(h(ϑ) = r, vr, vt|θ) in equation 3 for
this work.

3.3 Data: Dwarf Galaxies and Globular Clusters

The present paper uses the same satellite data as Eadie et al. (2015), which consists of
kinematic data from 24 dwarf galaxies and 64 globular clusters. However, as mentioned in
Section 2, we now use the Heliocentric data (R, vlos, µ). With 88 satellites, there are 354
parameters ϑ, in addition to the 2 Hernquist model parameters θ = (a,Mtot).

4. Results

Figure 1 shows preliminary results using our hierarchical Bayesian approach, compared to
the results from the original method outlined in Eadie et al. (2015). The results from Eadie
et al. (2015) are shown in faded colours, and the results from the current paper in vivid
colours. The Bayesian credible regions in the analysis by Eadie et al. (2015) do not overlap
with the current results beyond approximately 20 kpc. TheMtot estimate is 0.78×1012M�,
with a 95% credible region of (0.69, 0.90)×1012M�. The credible regions for the mass
profile are represented by different shades of teal in Figure 1.

5. Discussion

The preliminary results presented in Figure 1 are noticeably different from previous efforts.
Interestingly, Eadie et al. (2015) showed that high-velocity objects, such as the globular
cluster Pal 3, can have a significant affect on the mass estimate of the Galaxy. When they
removed Pal 3 from the data and performed their analysis again, the mass estimate of the
Galaxy decreased significantly. Pal 3’s measurement uncertainty in µα cos δ is 70% of its
measured proper motion in right ascension, and its measurement uncertainty in µδ is 103%
of its measured proper motion in declination. Therefore, it would not be surprising if Pal
3 carried less weight in the analysis once its measurement uncertainties were included.
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Figure 1: Comparison of the results from Eadie et al. (2015) (upper curve) with the results
found here (lower curve), which include measurement uncertainties. Shown are the 95, 75,
and 50 percent credible regions for each.

However, it should also be noted that the reduced mass profile shown in Figure 1 is the
cumulative effect of using all measurement uncertainties in the analysis.

The transformations from the Heliocentric to Galactocentric reference frame may also
be playing a role in the mass estimate. Eadie et al. (2015) used pre-determined Galacto-
centric measurements from many different studies. Although differences in R� are small
between studies, and should not substantially affect these transformations, it is worth in-
vestigating to make sure this isn’t the case.

The hierarchical method presented here could be improved. Although the measurement
uncertainties in vlos and µ are independent because they are measured using entirely dif-
ferent methods, ∆µδ and ∆µα cos δ are probably dependent. The measurements µδ and
µα cos δ are taken from the same set of images, and so the measurement uncertainties be-
tween µδ and µα cos δ will be correlated. It would be beneficial to include their dependence
in the analysis.

There are also other important Galaxy models to test that are popular in the literature,
such as the empirical model proposed by Navarro et al. (1996). However, some theoretical
problems remain with these empirical models (see Eadie et al. 2015, for more details).

Finally, it is important to consider the correlation between distance and measurement
uncertainty. In general, the further away a satellite is, the more uncertain its distance and ve-
locity measurements. Furthermore, satellites that are far away are more likely to be missing
proper motion measurements, because more time is required to observe the motion across
the plane of the sky. Thus, there is a selection bias in the proper motion measurements, and
its effect on the mass estimate should be investigated with simulations.
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6. Conclusion

We have built upon the work of Eadie et al. (2015) and introduced a hierarchical Bayesian
technique that estimates the mass and mass profile of the Milky Way Galaxy while in-
corporating the measurement uncertainties of the data as well as incomplete data. The
preliminary results presented here suggest that including measurement uncertainties can
substantially change the mass estimate and mass profile of the Galaxy, and warrant further
investigation.
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