
MINI-COURSE ON CODE
DEVELOPMENT AND PACKAGING

INTRO TO SOME ADVANCED
TOPICS

GitHub Actions

GitHub Actions

Last year, GitHub itself released a CI/CD (continuous-integration/continuous-
delivery) service that is automatically part of every GitHub repository  
—> GitHub Actions

Similar to Travis CI, configured with YAML files (.yml), but some big advantages:

Easily configure multiple different runs to do (CI tests, building
documentation, building a website, responding to issues/pull requests, pushing
to AWS S3, …)

Re-use atomic steps defined in other GitHub repositories (e.g., setup python,
setup Miniconda)

More free runners available (up to 20)

SETTING UP GITHUB ACTIONS
FOR YOUR REPOSITORY

Go to “Actions” tab

SETTING UP GITHUB ACTIONS
FOR YOUR REPOSITORY

or just add a .yml file under .github/workflows

<— Informative name
<— When to run the workflow
(e.g., on: [push,pull request])

<— Define a matrix of different builds,
similar to Travis CI

(can’t ‘include’, so exclude)
<— Arbitrary sequence of steps:

1) check out the repository

<— Operating system
(can be ubuntu, mac, windows)

<— 2) setup Python
<— 3) install dependencies

with pip
<— 4) install package

<— 5) install test dependencies
and run tests

Easy to use multiple operating systems:

RE-USING OTHER ACTIONS

GitHub users can define their own ‘actions’ that you can re-use in your own
workflows: e.g.,

- uses: actions/checkout@v2

- name: Set up Python ${{ matrix.python-version }}  
 uses: actions/setup-python@v1  
 with:  
 python-version: ${{ matrix.python-version }}

Take arguments in the with: section

Make sure to a) use a released version (e.g., @v2), b) check that you can trust the
action if you give it passwords or other permissions

USING SECRETS

If as part of a workflow, you need to authenticate, you can add ‘secrets’ to
your GitHub repository that can be used by actions (usernames, passwords,
SSH keys, etc.)

Use as ${{ secrets.SECRET_NAME }}

Not shared with forks, quite secure

But always try to make secrets specific to GitHub, so can be easily revoked
(e.g., set up special SSH key for GitHub use rather than using your normal
one)

SSH keys: set up special GitHub private key with no passphrase

Once you hit ‘Add secret’,
you can never see the value again

PRACTICAL EXAMPLE: UPDATE
YOUR WEBSITE ON LEPUS

PRACTICAL EXAMPLE:  
UPDATE WEBSITE ON AWS S3

ADDING BADGES TO YOUR
README

WHY BADGES?

What are status badges? Images like

Helpful way to get an overview of your package’s status on the various services that you are
using:

Continuous-integration services like Travis CI, AppVeyor, GitHub Actions

Test coverage statistics from Codecov

Documentation’s status from readthedocs.io

Package version on PyPI

…

Travis CI

Click on the badge!

AppVeyor

GitHub Actions

Codecov

readthedocs.io

PyPI

MAKE YOUR OWN WITH
shields.io

ADDING A C EXTENSION TO
YOUR PACKAGE

WHY YOU MIGHT WANT TO
ADD A C EXTENSION

Python is very convenient to code in, but can be slow for
computationally-expensive applications

Olden times: write entire application in C or Fortran to get speed
(e.g., Gadget, MESA)

Now: provide interaction API in Python for easy code interaction,
results analysis, plotting; write slow parts in compiled language

Could use other compiled languages, but Python is itself written
in C (CPython), so C is the easiest option

OPTIONS FOR C EXTENSION
Write an entire module in C (e.g., some parts of the standard library):

Cumbersome, difficult, and not very portable

Wrap existing C library/code in Python with no changes to C code:

Advantage is that you can wrap existing code or allow C code to interact with other languages
(e.g., wrap same C library in multiple languages)

ctypes, or wrapper generators like SWIG (SWIG not recommended)

Write C code specific to Python application, but use C only to speed up computationally-expensive parts
of the code:

Convenient, good option for speeding-up highly package-specific code

cython

Don’t write any C code! Just use an automatic Python —> C/machine-code compiler: works well for
simple functions

ctypes

My own preferred method, part of standard library

Sequence:

Compile C module into shared library or DLL (can be done
automatically in setup.py)

Load shared library in Python code, declare function
signature

Call functions in the shared library directly from Python

ctypes: example

ctypes: example

ctypes: example

Annoying:

Can be confusing to find the library (built for system libraries)

You have to declare all functions and their parameters and return types

Complicated to pass objects, need to define them as structs in C

Good!

Can easily pass arrays as pointers, other pointers (but make sure arrays are
C_CONTIGUOUS)

Very fast

ctypes

Things are a bit more complicated on Windows: You need to explicitly export the C functions you want to expose,
leads to code such as

#ifdef _WIN32 
#include <Python.h> 
#define EXPORT __declspec(dllexport)  
#if PY_MAJOR_VERSION >= 3 
PyMODINIT_FUNC PyInit_libexampy(void) { // Python 3 
 return NULL;  
}  
#else 
PyMODINIT_FUNC initlibexampy(void) {} // Python 2  
#endif 
#endif 
#else 
#if defined(__GNUC__)  
#define EXPORT __attribute__((visibility("default")))  
#else 
#define EXPORT 
#endif

Then put EXPORT in front of functions you want to expose

Since Python 3.8, you need to specify winmode=0x008 in the CDLL call

ctypes on Windows

Essentially, a way to write Python-style code that allows fast
compiled C code to be generated

So keep many of the advantages of coding in Python, combined
with speed of C

Install with pip install cython

cython

cython: example

Note the docstring!

cython: example

Can now import exampy_c.math_cython and use functions

Typical workflow:

Figure out which parts of your code are slow

Move them to a .pyx file, add static types (double, etc.)

use def for functions available in Python, cdef for functions
only available in C, cpdef for functions available in both

Quite complicated in the end, because need to almost learn
another language and create non-portable code

cython

ALSO CHECK OUT

numba: Just-In-Time (JIT)
compilation of functions that
use numpy into fast machine
code

cupy: run numpy code on a
GPU with minimal changes

PRESENTATIONS

