
MINI-COURSE ON CODE
DEVELOPMENT AND PACKAGING

RELEASING YOUR PACKAGE

VERSIONS

VERSIONING YOUR CODE

Once you start releasing different versions of your package, you should explicitly give your code a
version string

Users can use to know which version they are using

Installers know when to update the installation when asked (pip install -U …)

Version string typically appears in

setup.py’s setuptools.setup

Your package’s top-level __init__.py as the definition __version__ = …

Perhaps in your docs/source/conf.py

Make sure to keep these in sync (can use bump2version for this, but not discussed here)

VERSION STRING FORMAT

Format should be

[N!]N(.N)*[{a|b|rc}N][.postN][.devN]

But in practice really at most N(.N)*[{a|b|rc}N][.postN]
[.devN]

Doesn’t include ‘v’!

UNPACKING THE VERSION
STRING FORMAT

N(.N)*[{a|b|rc}N][.postN][.devN]

N(.N)*:

Main part: major.minor or major.minor.patch or … (but typically one of the first two); e.g., 1.9.2

Increment as

1.9.2 —> 1.9.3: small update to currently released version

1.9.2 —> 1.10.0: most new releases with new features

1.9.2 —> 2.0.0: major change in the code base, rare

[{a|b|rc}N]:

Use to indicate alpha (a), beta (b), or ‘release candidate’ (rc) for version specified by N(.N)*

[.devN]:

Use to indicate in-development version of version specified by N(.N)*, e.g., 1.9.3.dev0 is development version of
1.9.3

PARSING VERSIONS

Using the standard format allows you to use standard tools to
parse the version

These are also to use in your code, if you need a certain version
of a dependency for certain things

PREPARING FOR YOUR
PACKAGE’S RELEASE

STEPS TO PREPARE
Update the version number (e.g., remove the .dev part)

May want to add a few more files related to the release:

HISTORY(.txt, .md): gives overview of main changes since the last version;
good to start with release 1, where you can just say “first release”

MANIFEST.in: lists extra files to include in/exclude from source distribution,
default only .py, README.x, files package_data, not LICENSE, so have file with,
e.g.,

RELEASING TO GITHUB

Tag the version with git, using the version as the tag label

Push tag to GitHub

Then go to GitHub to create the release

RELEASING TO GITHUB

RELEASING TO GITHUB

RELEASING TO GITHUB

RELEASING TO PyPI

RELEASING TO PyPI

Python Package Index (PyPI): main repository for releases of
Python packages, source of pip install PACKAGE

TestPyPI: fully independent version of PyPI that can be used
to test whether release looks okay before making it (because hard
to change once released to PyPI)

To get started, make accounts on https://pypi.org/ and https://
test.pypi.org/

Interacting with PyPI uses twine, so pip install twine

https://pypi.org/
https://test.pypi.org/

CREATING THE SOURCE
DISTRIBUTION

First we’ll create a source distribution, a “tarball” that has the source code
that users can use to build the code themselves (e.g., through pip)

Check out a clean version of your repository, to make sure you don’t
accidentally include files that shouldn’t be included (e.g., files left over from a
merge), then check out the tag for version x.y.z

Create the source distribution in dist/ with,

TEST YOUR RELEASE ON
TestPyPI

Next, we upload using twine, first to TestPyPI

which gives

TEST YOUR RELEASE ON
TestPyPI

TEST YOUR RELEASE ON
TestPyPI

ALL LOOKS GOOD? —> PyPI

BUILDING “WHEELS”: BINARY
DISTRIBUTIONS

WHEELS

If all you upload to PyPI is the source code, then every time
users install your code, they need to build it locally (automatically
done by pip, but still)

Can lead to long build times if your code needs to be compiled,
and make it difficult to install on Windows

Solution: build “wheels”: binary distributions

To create them, first pip install wheel

TYPES OF WHEEL

Wheels are created using

If your code is pure Python, a platform-agnostic wheel is built (still useful for faster
installation!)

With compiled code, wheel becomes specific to

Python version

CPython version (typically the same…)

Operating system

WHEELS AND pip

You can upload wheels using the same command as before, e.g.,

When users then pip install YOUR_PACKAGE, if the Python
version and operating system match the wheel, the wheel is
installed, which is fast

BUILDING AND HOSTING
DOCUMENTATION ON readthedocs.io

DOCUMENTATION RECAP

Two weeks ago, we discussed the basics of documentation and how to create
documentation using sphinx

docs/ directory in your top-level package directory

docs/source/ with documentation source

Documentation consists of .rst files (or jupyter notebooks), API
using autodoc

with sphinx do make html/pdflatex/… to make the documentation

Skipped how to host the documentation online, will cover this now

GETTING STARTED WITH
readthedocs.io

Go to https://readthedocs.io/ and sign up with GitHub

Go to your dashboard and click to import a project

Find the project you want to import from your GitHub
repositories

Then you get to the admin page for your documentation

Click to build first version
(will fail, but will connect to GitHub)

CONFIGURING YOUR DOCUMENTATION
ON readthedocs.io

Add a file .readthedocs.yml to your repository with the
configuration parameters

E.g.,

https://exampy.readthedocs.io/en/latest/

MORE DETAILED
CONFIGURATIONS

If you need to install additional Python packages to build your
documentation (e.g., nbsphinx if you include jupyter
notebooks)

Add a docs/requirements.txt file (not
requirements.txt, because then that would appear to users
as the dependencies necessary to run your package, but these
are to build the docs)

Then use .readthedocs.yml:

MORE DETAILED
CONFIGURATIONS

