
MINI-COURSE ON CODE
DEVELOPMENT AND PACKAGING

TESTING YOUR CODE

BASICS OF GOOD TESTING

Presumably you test whether each piece of code that you write works in
some way, but you probably

only run it when developing the code and then assume all is fine

don’t write the tests as a set of functions, but rather run them in a Python
terminal / jupyter notebook

don’t exhaustively test how new parts of your code work together with
older parts of your code

This means that your code is very vulnerable to big and small issues that
come up, making it hard to use and maintain

BASICS OF GOOD TESTING

Better to use a test suite:

A set of Python functions (or classes) with checks on your code’s
functionality

Becomes part of your code repository, so it can be saved and changes
tracked, and applied to future changes to the code

Consists of unit tests and integration tests

If designed well, can be run with standard commands, keep track of test coverage,
and be run automatically by online services every time you update your code

EXAMPLE

UNIT AND INTEGRATION TESTS

Unit tests:

Test whether a small unit of your code works as expected:

Break your code into smallest unit (e.g., function) that makes sense and build more
complex functionality from these smallest units

Unit tests check that each of the smallest units does what it is supposed to do

Integration tests:

Even if each unit works as expected, they may not work together as they should

Integration tests check that different units of your code work together well and give
correct results

GOOD QUALITIES OF A TEST
SUITE

Should be as minimal, short, and atomic as possible: Keep tests as simple as you can and still
achieve a useful test

Should run in as little time as possible: One you add many tests, the time the text suite takes
to run will get long…

Should test expected outputs, but also errors and warnings raised: If you are raising exceptions
or warnings upon certain behavior, test that that is correctly done as well

Should test setting non-default keywords for functions and methods to make sure that works
as expected

Should test different invocations of functions: don’t just test one, perhaps special case, but
make sure the function works for different cases of the inputs

Should be well-commented!

WHAT ARE GOOD THINGS TO
TEST?

Context specific!

Can check known answers: often we write code to solve problems that can only be
solved analytically in certain special cases. Test that the special cases work.

Can check known properties of the answer: even if we don’t know any solution, we
may require that the solution has certain properties (e.g., follows a conservation
law or symmetry). Test that known properties work.

Can check against alternative ways of getting the answer:

Alternative method that only applies in certain cases (but not analytic)

Alternative code implementation, e.g., in an external package

WRITING A TEST SUITE

WHERE DOES MY TEST SUITE
GO?

Inside your package:

Include the tests in the package itself and distribute them with the code

Advantage: users can easily run the test suite on their own machine and convince
themselves that the code works for them

Disadvantages: Adds a lot of code to your package that is not necessary for it to
work, typically not well-documented, and not tested itself (who tests the tests?)

Not typical to get a problem when code works as expected on one machine and
it and its dependencies install fine on the user’s machine

Not recommended

WHERE DOES MY TEST SUITE
GO?

Outside your package:

Include the tests in a sub-directory of your top-level directory, outside of the package itself

This way tests are part of your package’s git repository without being part of your package’s
distribution

Advantage: Your tests can depend on hard-to-install dependencies, as long as you can get them to
install, without having to worry about user complaints

My recommendation

WHAT DOES MY TEST SUITE
LOOK LIKE?

We will be using pytest to run the tests

pytest automatically detects tests, provided that

Files start with test_ and end in .py

Functions that are tests start with test, classes start with Test

WHAT DO MY TESTS LOOK LIKE?

A test statement is a simple assert statement

These are the only statements that make up formal tests, don’t do
something like if res < tol: print(“Didn’t work”)

Add a message to display when the assert fails

EXAMPLE: KNOWN VALUE

EXAMPLE: SYMMETRY PROPERTY

OR

EXAMPLE: TEST AGAINST
ALTERNATIVE

RUNNING A TEST SUITE WITH
pytest

RUNNING A TEST SUITE WITH
pytest

pytest is the preferred test runner for Python code

Automatically detects your tests (see before), prints overview of
what happens

Many options for running, skipping, verbosity of output, etc.

+ additional functionality for testing errors and warnings, labeling
known failures, etc.

pytest EXAMPLE

USEFUL pytest OPTIONS

-x: Exit upon the first failure (default is to run all tests)

-s: Print stdout and stderr outputs (default is to not print these)

-k EXPRESSION: Only run tests with EXPRESSION in the their
name

--lf: only run the last-failed test

--disable-pytest-warnings: don’t print all warnings (as a
summary at the end)

TESTING ERRORS

You can test whether your code correctly raises an exception
using pytest.raises

TESTING ERRORS

You can test whether your code correctly raises an exception
using pytest.raises

You can test the entire error string as well:

TEST COVERAGE

WHAT IS TEST COVERAGE?
Once you have a test suite, you will wonder “how much of my code is actually used when
running the test suite”

This question has different answers depending on what you mean:

Function coverage: what fraction of functions is used by the test suite —> should aim for
100%

Statement coverage: what fraction of statements is used by the test suite —> aim for
100%, can be difficult to get because of edge cases

Branch coverage: when my code branches, does the test suite cover all possibilities (if …
then… else…)?

Condition coverage: for complex conditional statements, does the test suite produce True/
False for each boolean sub-expression? (if x > 0 and y < 0)

coverage.py: MEASURING TEST
COVERAGE IN YOUR CODE
coverage.py is a Python package that will report the test
coverage of your test suite, most easily statement coverage

Simply run your test suite as

instead of

This collects the coverage info, but does not yet display it

Once collected, you can display the results in different ways

coverage report: text report

coverage html: HTML output

coverage.py: MEASURING TEST
COVERAGE IN YOUR CODE

EXAMPLE REPORT

USE --SOURCE TO SPECIFY THE
PACKAGE

EXAMPLE HTML REPORT

EXCLUDING CODE FROM TEST
COVERAGE STATISTICS

Sometimes you want to exclude some parts of your code from the test-
coverage statistics

Lines that you don’t think have to be tested (use sparingly!)

Lines that cannot be executed by the test suite

if False:

if __name__ == .__main__.:

For a single line, use # pragma: no cover

More complex patterns, use .coveragerc in the directory where you run the
tests

EXCLUDING CODE FROM TEST
COVERAGE STATISTICS

CONTINUOUS INTEGRATION

WHAT IS CONTINUOUS
INTEGRATION

Refers to running ‘integration tests’ on a regular basis, at high cadence

‘Integration tests’ in this context is the combination of building your package and running the test
suite, making sure that all parts of the code package work as expected (incl. installation)

Nowadays largely done by online services whenever:

You push a commit or set of commits to GitHub for any branch

Somebody opens or updates a pull request

Try to catch changes to the code (easy) and to dependencies (harder) that may cause your code’s
installation or tests to fail

Many services available, focus on Travis CI here, see notes for AppVeyor for Windows
integration (and we will talk about GitHub actions later)

CONTINUOUS INTEGRATION
WITH Travis CI

Runs on https://travis-ci.com/

Sign up with your GitHub account, select repository you want to
add

Configure using a .travis.yml file in your code repository’s
top-level directory

Then any push to GitHub triggers a Travis CI build

https://travis-ci.com/

A SIMPLE .travis.yml FILE

A .travis.yml FILE THAT
RUNS THE TESTS

Sections that set up the environment and what Travis CI runs: language:, python:,
env: for defining environment variables, matrix: for build matrices (see later),
addons:, services:

Things to run before the main installation: before_install:

Commands to perform the installation: install:

Commands to run before you run the tests: before_script:

The tests: script:

What to do if the tests were successful: after_success

notifications:

THE .travis.yml FILE

BUILD MATRICES

One of the great advantages of online continuous integration services is
that it is easy to test your code for different versions of your
dependencies

Travis CI has lots of support for creating build matrices:
combinations of different version that all get built and tested

Created automatically by combining different options in sections such as
python: and env:

Can also manually adjust the matrix in the matrix: section, e.g,
include: additional jobs or exclude: some jobs from the matrix

USING Miniconda

Installing many dependencies can quickly lead to long build times

You can install Miniconda and use that to install everything in
your Python installation that you need

See the notes for info on how to do this

