
MINI-COURSE ON CODE
DEVELOPMENT AND PACKAGING

DOCUMENTATION

BASICS OF DOCUMENTATION

Good documentation is essential for allowing people to use your
code

Should be as complete and up-to-date as possible

Best if written along-side code development, don’t leave writing
the documentation to a later time

Document functions/classes/methods and have a guide to using
your code

WHAT GOES IN THE
DOCUMENTATION?

Installation guide: list dependencies and how to install them, different ways
to install your code (pip or conda or …)

Quick-start guide and tutorials: giving examples of your code’s use to help
users get started

Good place to show off what your code can do!

Application programming interface (API): complete listing of all of your code’s
functions/classes/methods

Use automation to create this

docstrings

PYTHON DOCSTRINGS

docstrings: built-in Python feature to document (sub)modules,
functions, classes, and methods

Place to put documentation on your code’s use, not on its
implementation (docstrings are for users, not for developers)

Typically, multi-line strings enclosed in “““ ”””

DOCSTRING PLACEMENT

To be automatically attached to the module, function, class, or method, put
docstrings

Modules: Right at the beginning of the file

Functions: Right after the def a_function(…): statement

Classes: Right after the class a_class: statement

Methods: Right after the def a_method(self,…): statement

Then automatically bound to the module/function/class/method’s __doc__
attribute; you can also directly set this attribute!

MODULE DOCSTRING EXAMPLE

FUNCTIONS AND METHODS

Always need multi-line docstrings,

give overview of what the function/method does

List input arguments and keywords

List outputs

For methods, we don’t document self (because assumed and always the
same), so methods are essentially the same as functions

Follow a consistent style for all the docstrings in your code, e.g., the numpy
doctoring style

NUMPY-STYLE DOCSTRINGS

sphinx

WHAT IS sphinx?

Python tool to typeset documentation from a set of
reStructuredText files, with a lot of support for documentation
tools

reStructuredText: simple markup language for text documents
that can be turned into HTML, LaTeX, …

pip install sphinx

GETTING STARTED WITH
sphinx

Start a directory doc/ or docs/

In that directory type sphinx-quickstart

Answer a few questions

Name of the package

Author

Version

Separate build/ and source/ directories (otherwise have _build/ in source/): yes, a
good idea!

After this, you have the basic outline of your documentation

Configuration file, as a Python script (executed, so can contain
Python code)

Used to set all of the configuration:

General: name, author, version, extensions to use, general
configuration parameters

Configuration parameters for different output types: HTML,
LaTeX, …

conf.py

STARTING conf.py

STARTING conf.py (continued)

DOCUMENTATION PAGES

A set of .rst files in reStructuredText format

index.rst contains the main “toctree”, a table of contents

Only files listed in this toctree or in toctrees in those files
(etc.) are included in the documentation

toctree is an example of a directive, a way of telling sphinx (and
rst) about different elements (e.g., math, images, …)

index.rst can contain more, but the main toctree is essential

STARTING index.rst

GENERATING THE
DOCUMENTATION

Use the provided Makefile, type make for help

EXAMPLE .rst FILES

INCLUDING DOCSTRINGS

sphinx has a built-in extension to grab docstrings from the code and insert them into the
documentation (e.g., when creating the API)

Extension: autodoc (add “sphinx.ext.autodoc” to the extensions list in conf.py)

Also use napoleon for parsing numpy-style docstrings ”sphinx.ext.napoleon”

Three main directives:

.. autofunction:: func

.. autoclass:: a_class

Also has the :members: option to list member methods to include

.. automethod:: a_method

EXAMPLE USAGE

USING jupyter notebooks IN
sphinx DOCUMENTATION

Easy to write combination of text and code in jupyter notebooks,
and to include figures

Extensions: nbsphinx to include jupyter notebooks as they are
in sphinx documentation

python3 -m pip install nbsphinx

Add “nbsphinx” to the extensions list in conf.py

Then can just add notebook in a toctree!

