
MINI-COURSE ON CODE
DEVELOPMENT AND PACKAGING

WHY A MINI-COURSE ON CODE
DEVELOPMENT AND PACKAGING?

Most of astrophysical research these days consists of a lot of coding

Coding itself not a big part of undergrad/grad curriculum, much less how to
package/distribute code

Lots of lost opportunity for re-use of code

Lots of un- or under-documented code

Lots of un- or under-tested code

Aim: crash-course on code packaging to help you over the initial hurdle in
creating software packages with re-useable, documented, and tested code

MY OWN FORAYS IN CODE
PACKAGING:

LEARNING OBJECTIVES

Learning in this course will largely happen through you developing a small Python
software package, taking it through all of the basic stages of package development:

Set up the package in the standard way, use git/GitHub to track changes and
share the in-development version (today)

Document the code, automatically host the documentation online (class 2)

Test the code, automatically run tests (class 3)

Publish the package (class 4)

Some advanced topics: write C extension, … (class 5)

SOME LOGISTICS

Meeting room: AB 113

Meeting time/date: Tue 10:30am — 12:30pm, Feb 25, Mar 3., Mar.
10, (break), Mar. 24., Mar 26??

Course website:  
https://github.com/jobovy/code-packaging-minicourse

Slack channel #code-packaging-minicourse

https://github.com/jobovy/code-packaging-minicourse

ASSIGNMENTS

Crucial part of the course

Four basic assignments, working through code examples of what we cover in
class, building up your basic software package

Posted on course website

Second half of each lecture will be in-class work on the assignments / on
developing our package

For those of you taking the course for credit: send me a link to your package, I
will check that you do the assignments by looking through the commit history
😀

INTRODUCTION:
WHAT MAKES A GOOD SCIENTIFIC
SOFTWARE PACKAGE?

WHY PACKAGE CODE?
You write lots of code and probably re-use code often or use very similar code

You may be copying bits of code when you re-use them, for example, between files in a single project, or between projects

That’s prone to lead to confusion:

You have many different version lying around, doing the same thing or something slightly different

You likely don’t document your code, even if you comment it

You almost surely don’t test your code, because that’s hard

Package your code!

Create a single version contained in a git repository to track changes over time, adding features when you need the
code to also do things slightly differently from before

Re-use incentivizes documentation: tell present-day you what six-months-ago you meant for the code to do

Re-use incentivizes testing your code: make sure that code that you use a lot actually works!

Better science in the end!

WHY RELEASE CODE?
Releasing your code allows others to use it

Gain exposure for your work and yourself

People who use your code will remember who you are and learn about your work

People who use your code may want to collaborate on new projects

Help the community progress, especially beginning researchers

Existing, released code provides a great jumping off-point for new research

Increase the standards of methods used in the field by releasing well-documented, well-
tested, robust code

Releasing code should include at least a small commitment to help people use it and respond
to bug reports (but manage your time!)

WHAT MAKES A SUCCESSFUL
CODE PACKAGE?

Essentially two tracks for successful packages:

Solve a hard problem (complex calculation, highly-optimized code, HPC): used because to difficult to implement
oneself

Solve a not-so-hard problem in a convenient manner: make your code so easy to use that people prefer it to
implementing the code themselves

We will focus on the 2nd track

Properties of a successful package:

Small and focused: don’t set out to solve all of astrophysics, or to include all code you may want to share in a single
package: pick a problem with a well-defined scope and stick to that

Make the code easy to install (probably the most important thing)

Make the code easy and intuitive to use

Make the code well-tested and robust

Degree of up-take has an upper limit set by the subject area, but other than that, ease-of-use and ease-of-installation
will largely determine use

SOME DOS AND DON’TS:  
INSTALLATION

Your code should be installable using standard commands:

pip install X

conda install X

python setupy.py install for installing from source

Avoid any additional required setup if you can (like putting data files in a particular location)
or use reasonable, documented defaults

Don’t ask people to download the code, edit a setup.py or Makefile for their system,
and then install

Attempt to support commonly-used operating systems (lots of people use macs, lots of
people use windows)

SOME DOS AND DON’TS:  
DEPENDENCIES

Use dependencies sparingly, because they will make installation/support/maintenance difficult

Support the latest major versions of Python and numpy

If you want your package to be heavy used and depended on, you need to be compatible with
versions stretching years into the past

Make difficult-to-install dependencies optional to avoid them holding up use

try:  
 import difficult_package  
except ImportError:  
 _DIFFICULT_PACKAGE_LOADED= False  
else:  
 _DIFFICULT_PACKAGE_LOADED= True

Be wary of supporting alternative dependencies for the same task (I’ve made that mistake in the past!)

SOME DOS AND DON’TS:  
DOCUMENTATION

Write documentation as soon as you start implementing a feature. Don’t think “I will document
it once it’s final”. Writing the documentation may even help with designing the implementation

Remember that nothing is obvious to other users of your code: every argument and keyword
needs to be documented, including its expected type

Having some documentation is better than none, so it can be sparse, but it’s unlikely that you
will write too much documentation

Keep a changelog to keep track of changes after the first implemtation:

Keep a general HISTORY.txt (HISTORY.md) file for the package to keep track of major
changes

Keep a history of major changes in the documentation of each function/class/…

SOME DOS AND DON’TS:  
INTERACTING WITH THE USER

Avoid printing anything

Avoid writing to files, all output should be returned as a return value

Avoid prompting the user for input, all inputs should be arguments of keywords

Use keywords with reasonable defaults for as many inputs as possible

Use standard Python error reporting, choosing the closest relevant among the standard
exceptions:  
raise ValueError(“MESSAGE”)

Use standard Python warnings reporting (don’t print warnings):  
import warnings  
warnings.warn(“WARNING MESSAGE”)  
Warn generously, users can always ignore when you use the standard warnings

SOME DOS AND DON’TS:  
CODE DEVELOPMENT

For any code package that will be used for years by multiple users, maintenance becomes a large part of the
work

Develop your code with maintenance at the back of your mind:

Avoid feature bloat: Just because you could implement a feature doesn’t mean you should. Every new
feature will have to be maintained and will break, be mindful of future-you’s time

Comment liberally, writing down the rationale for implementation decisions in the code, especially non-
obvious ones; throughout your code, use descriptive variable, function, and class names, even for purely
internal function (also document internal functions)

Try to keep a simple structure for your code, keeping it easy to navigate

Having a comprehensive test suite will help you spot maintenance issues as soon as they arise, when they
are typically easier to fix

Keep your code clean and logical, but not at the expense of user experience: when you face the choice
between a simple user experience and simple code, choose the user experience

git
VERSION CONTROL

WHY USE VERSION CONTROL?

Version control keeps the history of changes to your code (or documents, images,
etc., but text files work best), allowing you to trace changes over time. This frees
you from having to track changes manually.

Most version control systems use a central location for the main copy of your code,
which acts as

A crucial back-up of your work

A central place to share your code with yourself (for use on multiple machines)
and others (e.g., collaborators)

Branches allow you to keep multiple in-progress versions of your code that can be
developed in-parallel and merged later

git VERSION CONTROL

git is the latest and greatest version control system, probably
the only one you’ve heard of

git has a decentralized approach to version control: by default,
each version (“clone”) of the code repository has the full history of
changes

git is now closely associated with GitHub although technically
they are independent from each other

QUICK git INTRO

We will now run through some basic and advanced features of
git, based on the prior knowledge of the course participants

THE BASIC STRUCTURE OF A
PYTHON PACKAGE

A PYTHON PACKAGE

As part of this course, you will develop a Python package and eventually
publish it to the Python Package Index (PyPI) for distribution to the
community

We will build this from the ground up, starting with the most basic outline and
adding features along the way

This is how I always build packages, at most starting from a basic outline from
a previous package

There are also package templates (e.g., through cookiecutter) that
typically come with batteries included, but these are highly confusing for
beginners

NAMING YOUR PACKAGE

First decision is a big one: what do you want to name your package?

Use a name that is short, memorable, relevant, but most importantly as unique
as possible:

Check whether the name that you have in mind exists on PyPI (so you can
eventually pip install PACKAGENAME)

To be exhaustive, search GitHub and sourcefourge.net to see what’s
already out there with the name you have in mind

The name of your package will quickly go in many different places, so give the
naming careful thought now

http://sourcefourge.net

THE BASIC PACKAGE STRUCTURE

Package lives in directory with its name

__init__.py file in that directory makes it a package (can be
empty)

setup.py file will install the package (+distribute; needs content!)

THE BASIC PACKAGE STRUCTURE
Can write code directly into __init__.py or in another file in
that directory and import into __init__.py (this allows you
to use the functions as from exampy import FUNCTION)

Note that if you just write code in utils.py, you have to
import exampy.utils

THE BASIC PACKAGE STRUCTURE
Submodules go into a subdirectory of the package (can also be a
file, but then can’t split into multiple files, which you will typically
want to do)

Now you can import the submodule as import
exampy.submodule

Structure of the submodule exactly analogous to the top-level
module

THE setup.py FILE

Key to allowing your package to be installed using standard tools

Uses setuptools to build, install, and package/distribute the code

(alternatively, you can use a setup.cfg configuration file, but
still need setup.py)

Basic setup.py file calls setuptools.setup to define the
package

THE setup.py FILE
Basic example:

From a packaging standpoint, most important here is
packages=[“exampy”] which tells the setup what the
package is; can also do 
packages=setuptools.find_packages(include=['exampy','exampy.*'])

THE setup.py FILE

Add long_description:

THE setup.py FILE

Add classifiers:

THE setup.py FILE
More options:

url: homepage

license: name of the license

python_requires: constraints on Python versions, e.g., python_requires=‘>=3'

install_requires: basic dependencies, e.g., install_requires=["numpy","scipy"]

package_data: non *.py files that need to be added to the package, e.g.,  
package_data={"": ["README.md","LICENSE"]}

entry_points: use for scripts that are part of the package

INSTALLING YOUR CODE FOR
DEVELOPMENT

Normally use:

For development use:

or

This allows you to edit the code and use it without constantly re-installing it

CODE LICENSES

WHY DOES YOUR CODE NEED A
LICENSE?

Without a license, your code is assumed to be copyrighted to
you, not allowing re-use, modification, or re-distribution

You want people to use your code? It needs a license

A license also provides legal protection against liability: explicitly
deny any liability related to any use of the code

TWO CATEGORIES OF LICENSES
Permissive licenses:

Allow arbitrary use, modification, and re-distribution provided (typically) that the original license is
retained and the original author credited, denying liability

Examples: MIT License, BSD 3-clause License (these are simple)

License of choice for most Python projects

Copy-left licenses:

Allow use, modification, and re-distribution provided that the re-distributed code is licensed under
the equivalent terms

Example: GNU General Public License v3

Use when you want to make sure that your code remains open source, but make inclusion of your
code in other projects difficult

GitHub

GITHUB
Main website to share code these days (RIP code.google.com)

Acts as central ‘main’ repository for your code that you use to share with yourself (on different
machines) and others

But much more:

Bug tracker: Issues

Forks: Copies of your repository by others that branch off of your repository, main way for
other users to contribute to your code (they don’t need write access)

Pull requests: Method for merges between branches in forks and branches in the main
repository

Formatted README.md gives nice-looking home-page for your code

Hooks to other webservices: automated documentation, automated testing, etc.

http://code.google.com

INTERACTING WITH GITHUB

Get a local copy by “cloning” the GitHub repository (get link on
GitHub page)

Then basic git commands will automatically work

When you create a branch, you need to push it to GitHub to tell it about
it

GITHUB ISSUES

A GOOD ISSUE
contains a minimal, complete, reproducible example code snippet:

minimal: use as little code as possible

complete: should be able to be run without any additional stuff

reproducible: make sure that this snippet reproduces the error

So you likely have to edit down the actual problem you are having into a small, complete code
snippet that has the same issue; this can be the basis of a test added to the test suite to make
sure the error remains solved

Include operating system, Python version, version of dependencies

Prompty respond to queries for additional information or requests to test possible solutions

You can refer to the issue in commits as #ITSNUMBER to link these commits in the issue’s page

A NEW REPOSITORY

ASSIGNMENT 1

ASSIGNMENT 1

Create your package

Create it on GitHub

Play around with git

Play around with GitHub

