Galactic Structure and Dynamics

and the stand of the stand of the stand of the

AST 1420

Presentations next week! Schedule

Wednesday
Sam Berek
Emaad Paracha
Yuyang Chen
Dang Pham
Wednesday
BoLin Fan
Seery Chen
Amanda Cook
Oliver Cardinal
Thursday
Steffani Grondin
Jibran Haider
Henry Leung
Bethany Ludwig
Ayush Pandhi
Jacob Taylor

noon to 1 pm
The Magellanic clouds and their interaction with the MW
Milkomeda
The M-sigma relation
The M-sigma relation in dwarf galaxies
3 to 4 pm
Ultra-diffuse galaxies
Dark matter in ultra-diffuse galaxies
Galaxies without dark matter
Cluster dark matter profiles
noon to 1:30 pm
Dark matter in globular clusters
Simulations of the large-scale structure of the Universe
Cosmological simulations of galaxy formation
Reionization and binary systems
Action-angle coordinates for stars in the solar neighborh'

The mass of the Milky Way

Reminders

• Assignment 3 due now!

The shape of elliptical galaxies

The tensor virial theorem

- Regular virial theorem says that total kinetic and potential energy have to be balanced
- Tensor virial theorem generalizes this to saying that the kinetic and potential energies in different directions have to be balanced separately
- Don't get hung up on the 'tensor' part, for our purposes these are simply matrices.

 $2\mathbf{K}_{\alpha\beta} + \mathbf{W}_{\alpha\beta} = 0$

The intrinsic and projected ellipticity

- ellipticity eps_obs = 1-beta/alpha
- with b=a)

• We only observe the 2D shape of elliptical galaxies: this is an ellipse with an

• Axisymmetric ellipsoid has an intrinsic ellipticity $eps_int = 1-c/a$ (fig. below

Figure 3. Contours of constant ellipticity on the sphere of viewing angles, for an oblate galaxy (p = 1 and q = 0.5, left) and a triaxial galaxy (p = 0.9and q = 0.5, right). The ellipticity varies between 0 and 1 - q.

Weijmans et al. (2014)

The intrinsic and projected ellipticity **Determining the ratio**

ΟĿ

•	Under the assumption of axisymmetry and random viewing orientations, we can uniquely determine the distribution of intrinsic ellipticities from a distribution of observed ellipticities	F(e)	1.5 1.0 0.5	
•	Wide distribution of both and of the ratio, but typically ~2		0.0 0 4 E	
•	Uses galaxies widely separated in the cosmic web, so intrinsic alignments are small	f(q)	3	
•	Without assumption of axisymmetry, there is no unique solution		1	

Are elliptical galaxies flattened by rotation?

- rotation:
 - Rotation around z-a
 - $\mathbf{\Pi}_{\alpha\beta} = M \, \sigma^2 \, \delta^{\alpha\beta} \, .$ • Isotropic dispersion tensor:
- TV theorem: $M v^2 \delta^{\alpha\beta} (1 M)^2 \delta$
- Ratio of xx and zz:

• Let's assume elliptical galaxies are flattened by

XIS:
$$\mathbf{T}_{\alpha\beta} = \frac{M v^2}{2} \,\delta^{\alpha\beta} \left(1 - \delta^{\alpha z}\right)$$

$$(-\delta^{\alpha z}) + M \sigma^2 \delta^{\alpha \beta} = -\mathbf{W}_{\alpha \beta}$$

$$\frac{v}{\sigma} = \sqrt{\frac{W_{xx}}{W_{zz}} - 1}$$

Are elliptical galaxies flattened by rotation?

Are elliptical galaxies flattened by rotation?

Are elliptical galaxies flattened by rotation?

Are elliptical galaxies flattened by rotation? Discussion

- Physically, without rotation, you need to oscillate less in the flattened direction, because otherwise the orbits would fill in a spherical region
- With rotation that's not necessary, part of the shape is due to the rotational part of the orbits
- Comparison to observed v/sigma shows that elliptical galaxies must have an anisotropic velocity dispersion tensor —> triaxial?
 - No mathematical need for triaxiality, but axisymmetric anisotropic tensor leads to the question why two axes would be the same? No obvious physical reason a priori that dispersion should be axisymmetric

Schwarzschild modeling

Schwarzschild modeling **Basic idea**

- Basic idea is to represent a galaxy as a set of discrete orbits
- Because we use many fewer orbits than there are actual stars, don't think of these orbits as representing the orbit of individual stars
 - Each orbit represents a set of stars
 - Quite possible that data would show that the weight is zero -> no stars on this orbit
- Each orbit has a weight that represents the fraction of the mass that is in stars on this orbit lacksquare
- General hierarchy is that Norbits >> Nconstraints
 - Fit is therefore underdetermined -> infinitely many combinations of weights give the same density
 - Choose 'best' one using some smoothness criterion: e.g., maximize entropy

Schwarzschild modeling Orbit library

- How many orbits?
 - Schwarzschild (1979): 1500 orbits
 - More modern implementations (e.g., van den Bosch 2008): 3528 orbits
 - Use dithering: integrate a bundle of orbits for each 'base' orbit to smooth out predictions: add factor of ~100 (e.g., vdB uses 3528 x 125 = ~450k orbits)
- One of the main issues in building the orbit library is how to make sure you are sampling all orbits:
 - Remember: axisymmetric systems typically have 3 integrals, but we can't determine the third
 - One way to do it for axisymmetric systems: start orbits at (E,Lz) along the zero-velocity curve
 - Going from z=0 to z = z_thin-tube samples all orbits (except for some resonant ones)
 - Triaxial case is much harder, but people similarly use the surface of section

Schwarzschild modeling Some other practical difficulties

- Need to deproject an individual galaxy:
 - Can guess, but no unique answer even for axisymmetric elliptical galaxy
 - Deprojection becomes part of the model: which deprojection leads to the best agreement with the observed kinematics?
- Hard to model more complex systems, like bars in disk galaxies:
 - Sampling orbits is difficult, because rotating bars have complex orbits
 - One solution: made-to-measure modeling: rather than integrating all orbits ahead of time, integrate orbits with N-body forces while changing their weights —> Nbody dynamics can automatically populated relevant orbits [but still tricky!]

•

Schwarzschild modeling: applications: black holes at the centers of galaxies

 S^{-1}

 $^{2})^{1/2}/(km$

6

 $(V^2+$

- Big discovery in late 1990s from HST observations combined with Schwarzschild modeling: all large galaxies have supermassive black holes at their centers
- Used axisymmetric
 Schwarzschild modeling,
 could rule out 'no black hole'
 solutions
- Further investigations led to M-sigma relation (Ferrarese & Merritt 2000, Gehbhardt et al. 2000)

Magorrian et al. (1998) $R/arcsec \rightarrow$

Black hole masses from Schwarzschild modeling

- Why is an increased velocity dispersion evidence for a black hole?
 - Gravitational potential sets the velocity at which stars orbit (very roughly, v ~ sqrt[phi])
 - Stellar surface brightness allows us to compute stellar potential and predict the velocities that should result from that
 - If velocities are bigger, then there has to be an additional source of gravity -> black hole

Disk stability

Toomre ()

• Q parameter:

• Similar criterion for fluid disks with sound speed c_s :

 $Q \equiv$

• When Q < 1, disk unstable to some axisymmetric perturbations, more so the smaller Q gets

 $Q \equiv \frac{\sigma_R \kappa}{3.36G\Sigma} > 1$

$$\frac{c_s \kappa}{\pi G \Sigma_0} > 1$$

Toomre Q Discussion

- Computed using axisymmetric perturbation, so that's technically what it directly applies to
- Can determine this whenever you can determine the velocity dispersion,
- course!

surface density, and epicycle frequency -> can be done in external systems

• As far as I can tell, only a few people have watched this lecture, so please watch it as it's probably one of the most important things you will learn in this