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Galactic Structure and Dynamics 

Q&A



Reminders

• Assignment 2 posted


• Proposed presentation topic due today



Agenda

• N-body gravity solvers


• Orbit integration


• N-body simulations



N-body solvers



N-body solvers
• Problem faced in all N-body simulations: mutual gravity 

between N bodies

• 1/|xj-xi| can be softened, but basic problem stands: 

• Naive implementations: O(N) / particle x N particles —> O(N2) 

• Collisional simulations require high-precision gravity —> directly 
compute the sum 

• Collisionless simulations can smooth the gravitational field and 
use this to speed up code



Softening
• In collisionless N-body simulations, particles are typically softened 

• Replace  
 
with 

• Simple, common softening: point-mass —> Plummer sphere 

• Softening removes the unphysical force divergence when ‘particles’ 
get close 

• Doesn’t reduce two-body relaxation much though, just close 
encounters



Softening

• Do particles get close enough together that softening is necessary?


• Remember relaxation time: trelax ~ N / log N x tdyn —> all N-body simulations 
of galaxies have N << Ntrue —> too many interactions between particles


• Choose N such that trelax >> tsim


• But typically still leaves some non-physical interactions, including at b 
< bmin (bmin is where we cut off the interactions in the calculation of the 
relaxation time)



Softening kernel

• Replace 1/r potential with softened form that does not diverge as r —> 0 and 
has the same total mass


• For example, Plummer

• Softening length epsilon: to prevent large-angle deflections in system of size 
R


• Maximum inter-particle force < typical mean field



Softening kernel in a tree

• In tree implementation, we calculate the potential by expanding the potential around 
each tree cell’s center of mass


• For smoothening, need to expand the potential coming from the softening kernel 
rather than 1/r



Hierarchical tree



Hierarchical tree



Hierarchical tree

Always divide in half



Hierarchical tree

Always divide in half



Hierarchical tree

Always divide in half



Hierarchical tree:  
real quad-tree example

Stop when Nin cell < Nlimit

Set Nlimit based on computational considerations



Gravity approximation

Expand around center of mass, not the center



Gravity approximation

Expand around center of mass, not the center



(Re)-building the tree

• Tree structure changes at each time step —> need to re-calculate the tree at 
every time step


• Tree set up is O(N log N) and typically quite fast, so it’s not that bad to re-
calculate it…


• Can keep the structure of the tree the same for K time steps, but update the 
center of mass and multipole moments based on particle trajectories, only fully 
re-build tree once it’s gone out of date


• Moving particles between cells is difficult (typically on a different computational 
node; lots of complicated algorithms to keep nearby particles nearby in 
memory), so re-build once too many particles are moving across boundaries



Orbit integration



Hamiltonian integration

• Also known as symplectic integration (due to the symplectic nature of 
Hamiltonian mechanics)


• Discretize the Hamiltonian in the following way

• Comb is unphysical, simply a computational device!



Hamiltonian integration
• Can also discretize the Hamiltonian in other ways


• For example, in planetary systems, the Hamiltonian is

• and we can discretize this as

• The ‘leapfrog’ integrator for this becomes:


• Drift: solve Keplerian orbit


• Kick: apply forces from other planets



Leapfrog integration
• Leapfrog drift-kick-drift is a second order methods (so errors scale as [Delta t]^3), 

while kick-drift is a first-order method


• Force evaluation is generally the computationally expensive part and these two 
integrators require the same number of force evaluations (a single kick)


• Moreover, if we don’t need to know the position at the end of the time step, we can 
combine the second drift of the previous step with the first drift of the second step



Combining Hamiltonian and ‘regular’ orbit integration

• Advantage of Hamiltonian integration is its long-term stability, but it comes at 
the cost of getting the short-term behavior wrong


• That’s a problem when interesting things happen on short time scales


• For example, a collision


• Really only a problem in systems that we want to integrate for many many 
many dynamical times, like planetary systems


• Hybrid integrators detect collisions and then switch to regular, high-order 
integrators to resolve the collision before going back to the Hamiltonian 
integrator



Energy conservation

Bovy (2015)



Block time-step scheme

BT08



Block time step scheme
• How do you decide which level to place a particle on?


• Ideally, you would know each particle’s dynamical time


• But this is very difficult to know, because we don’t know in general what a 
particle is orbiting around (e.g., in a merging galaxy simulation)


• Typically set the timescale for each particle as the time scale on which the 
acceleration is changing, estimated or computed (based on the jerk)


• E.g., 

• Block time steps are used in most big simulations of galaxies



Why does an N-body simulation 
work?



Collisionless N-body modeling
• Coupled equations: collisionless Boltzmann 

equation

• Plus Poisson

• Poisson has formal solution

• We know the initial condition f(x,v,t=0) and want to 
know how it evolves



Method of characteristics for solving a PDE
• An initial-value PDE can be solved using the method of characteristic


• For example

• with u(x,t=0) = f(x0)


• Change coordinates from (x,t) to (x,s) such that

• The PDE then becomes and ODE

• with initial condition u(0) = f(x0)



Method of characteristics for solving a collisionless N-bod y simulation

• Change coordinates from (x,v,t) to (x,v,s) such that

• CBE becomes

• Solved by f(s) = constant = f(x0,v0)


• Also t=s


• Other two equations are Hamilton’s equation


• Characteristic curves are therefore orbits!



Method of characteristics for solving a collisionless N-bod y simulation
• Find the characteristic curves by 


• Monte Carlo sample a set of initial conditions (N initial conditions for 
characteristic curves)


• Compute the gravitational potential / forces


• Solve for the orbits of the initial conditions


• Potential changes as the orbits evolve, so need to re-compute it along the way


• An N-body simulation is therefore nothing more than solving the CBE with 
characteristic curves


• The N bodies and their orbits are nothing more than Monte Carlo samples from the 
distribution function and the characteristic curves of the solution


• they don’t correspond to physical objects



Types of simulations we can do

• Tree codes are good for basically any galaxy simulation


• For cosmology, it can be computationally expedient to use a Fourier (particle-
mesh) technique for the large scales


• Can we integrate forward observed data?


• No!


• Errors are too big


• N-body simulations are weakly chaotic on ~dynamical time, so while we 
can trust the overall statistics, the individual trajectories are not accurate


