Galactic Structure and Dynamics

and the stand of the stand of the stand of the

AST 1420

Presentations

Presentations

- Week 10: Nov 23 to 27, date/time TBD
- Each student presents on a topic for ~10 min.
- Encouraged to find your own topic in Galactic structure and dynamics!
- Could be a survey and some results on a topic addressed by the survey: e.g., Gaia and co-moving stars, ATLAS 3D integral-fieldspectroscopy and the IMF, APOGEE and chemical evolution, ...
- Or a topic: e.g., rotation curves of low-surface brightness galaxies, rotation curves at redshift ~ 2 , the dynamics of the inner Milky Way, Schwarzschild modeling of galactic nuclei to constrain black holes, ...
- Please email me with your proposed topic by Oct. 22

Agenda for today

Questions on gravitation in disks and orbits

Group activity

Questions on galactic rotation and dark matter

Gravitation disks

Gravity from a disk vs. a sphere

• Why the discontinuity?

The flattened logarithmic potential

• Negative density? What does that mean?

Poisson equation for axisymmetric razor-thin disks

$$\frac{1}{R} \frac{\partial}{\partial R} \left(R \frac{\partial \Phi(R,z)}{\partial R} \right) + \frac{\partial^2 \Phi(R,z)}{\partial z^2} = 4\pi G \Sigma(R) \,\delta(z) \,.$$

• Solution:

 $\Phi(R;k) = -2\pi G e^{-k|z|} J_0(kR)$

• With Σ

 $\Sigma(R;k) = k J_0(kR)$

Potential-density pair —> complete?

• If we can decompose • Then the potential is $\Phi(R,z) = -2\pi G \int_{0}^{\infty} dk \, e^{-k|z|} J_0(kR) S_0(k)$

Decomposition from the Fourier-Bessel theorem

Poisson equation for axisymmetric razor-thin disks

 $\Sigma(R) = \int_0^\infty \mathrm{d}k \, J_0(kR) \, k \, S_0(k) \, ,$

 $= -2\pi G \int_{0}^{\infty} dk \, e^{-k|z|} J_0(kR) \int_{0}^{\infty} dR' J_0(kR') \, R' \, \Sigma(R') \, .$

 $S_0(k) = \int_0^\infty \mathrm{d}R' J_0(kR') R' \Sigma(R')$

Bessel functions!

• Defined by

$$x^{2}\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} + x\frac{\mathrm{d}y}{\mathrm{d}x} + (x^{2} - \alpha^{2}) \ y = 0.$$

 $l_m(\mathbf{x})$

10-2

 10^{-4}

- Should have two linearlyindependent solutions as a second-order diff. equation —> Y_m(x) is second for m=integer
- Modified Bessel functions defined by

$$I_{\alpha}(x) = i^{-\alpha} J_{\alpha}(ix) ,$$

$$K_{\alpha}(x) = \frac{\pi}{2} \frac{I_{-\alpha}(x) - I_{\alpha}(x)}{\sin(\alpha \pi)}$$

Kuzmin, Miyamoto-Nagai disks

 $v_c(R/a)$

- How do these account for the radius of the galaxy?
- Which peaks higher?

Orbits in disks

Orbits in disks

How many orbits are there?

- What is the relation between initial condition and orbit?
 - In some sense every initial condition is its own orbit, especially for galaxies which are only O(10-100) dynamical times old —> 6D space of orbits
 - But on long timescales, most potentials are regular, meaning that they have three integrals of the motion, called the *actions*, that define the orbit
 - Three remaining phase-space dimensions are the angles or phases
 - Orbits are then tori in 6D space
 - Angles say where you are along the torus, but tori with the same actions are essentially the same —> 3D orbit space
 - Chaotic orbits have *fewer* integrals of the motion (two, one, or zero) —> less restrained in phase space —> lower dimensional space of separate orbits. In a very chaotic potential, a single initial condition could pass near every point in phase space

Integrals of the motion

- Are there integrals of the motion that aren't isolating?
 - Yes, but typically contrived. See example in B&T08 3.1.1
- Does E_z (the vertical energy) constrain the dimensionality of the orbit?
 - No! Not an exact integral for all non-circular orbits, so eventually leads to mixing outside of the surface $E_z = E_{z,initial}$

$$\Phi(r) = -GM\left(\frac{1}{r} + \frac{a}{r^2}\right). \tag{3.5}$$

For this potential, equation (3.11b) becomes

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\psi^2} + \left(1 - \frac{2GMa}{L^2}\right)u = \frac{GM}{L^2},\tag{3.5}$$

the general solution of which is

$$u = C \cos\left(\frac{\psi - \psi_0}{K}\right) + \frac{GMK^2}{L^2},\qquad(3.59)$$

where

$$K \equiv \left(1 - \frac{2GMa}{L^2}\right)^{-1/2}.$$
(3.59)

Hence

$$\psi_0 = \psi - K \operatorname{Arccos} \left[\frac{1}{C} \left(\frac{1}{r} - \frac{GMK^2}{L^2} \right) \right], \qquad (3.6)$$

Group work

https://github.com/jobovy/sparc-rotation-curves

Galactic rotation and dark matter

The observations

- Rotation curves obtained from long-slit optical spectra, optical IFU observations, or radio 21cm
 - Now also done with ALMA in the millimeter!
- How do we get the inclination?
 - In general we cannot know the inclination
 - Assuming models, we can determine the inclination
 - inclination

• Simple model: galaxy disk is circular, so observed shape is due to

The Bosma rotation fields

Bosma (1978)

Disk-bulge decompositions

- other?
 - disk and bulge separately
 - But mass can be separated

• Why can we treat the bulge and disk independently, do they not affect each

Yes, total circular velocity squared is sum of squared contributions from

Dark matter

- Why not low-luminosity object? Brown dwarfs etc.?
 - Could be! But expect those to be distributed similar to more luminous stars (that's included in the M/L assumption) -> why would compact baryonic objects be floating in the halo?
 - Microlensing searches show that DM cannot be compact objects floating the halo
 - Big Bang nucleosynthesis depends strongly on total amount of baryons in the Universe ->5%
 - CMB and structure formation would also be different (see later)
- Ways to constrain other DM interactions?

. . .

- Gamma-ray searches of DM decay and annihilation \bullet
- Dynamical effects of interactions in the dark sector