
AST1420 “Galactic Structure and Dynamics”
Problem Set 1

Due on Oct. 15 at the start of class

Most of the exercises in this problem set must be solved on a computer and the best way to
hand in the problem set is as an ipython notebook. Rather than sending me the notebook,
you can upload it to GitHub, which will automatically render the notebook. Rather than
starting a repository for a single notebook, you can upload your notebook as a gist, which
are version-controlled snippets of code that can optionally be made private. If you want
to make further changes, you can clone your gist in a separate directory and use it as you
would any other git repository. Please re-run the entire notebook (with Cell > Run All)
after re-starting the notebook kernel before uploading it ; this will make sure that the input
and output are fully consistent.

If you are unfamiliar with notebooks, you can also send in a traditional write-up (in
LaTeX), but you also need to send in well-commented code for how you solved the problems.
Thus, notebooks are strongly preferred :-)

Problem 1: The virial mass of the NFW profile. The virial mass of a dark matter halo is
arguably its most fundamental parameter, because the tight correlation between correlation
and mass found in numerical simulations of dark-matter halo formation means that dark-
matter halos in nature form an essentially one-dimensional sequence of mass. However, the
virial mass depends on how one chooses the overdensity ∆v that defines the virial radius.
A standard value for this is ∆v = 200, but as we will see when we discuss the formation
of dark-matter halos in more detail, ∆v should depend on the cosmological parameters and
the redshift of the halo’s formation. When doing this, ∆v ≈ 200 at high redshift (z & 2)
in our Universe, but at the present day a value of ∆v ≈ 100 is more correct. For a quan-
tity as fundamental as the virial mass, many discussions of it in papers and elsewhere are
surprisingly vague on the overdensity used to define it! Let’s see how much of an issue this is.

(a) Using the equations given for the NFW profile and using values appropriate for the
Milky Way’s dark-matter halo (ρ0 = 0.0035M� pc−3 and a = 16 kpc), compute the virial
radius and virial mass as a function of ∆v and plot them. Discuss how the virial radius and
virial mass depend on ∆v. Use H0 = 70 km s−1 Mpc−1.

(b) What about the NFW density profile causes the behavior that you see?

Problem 2: In his colloquium a few weeks ago, Scott Tremaine discussed scattering of
comets by the planets in the solar system as the comets pass through the inner solar system.
He mentioned that scattering of the comets tends to preserve their pericentric distances.
Let’s understand why that is using what we know about orbits in spherical potentials!

(a) Consider an orbit in a spherical isochrone potential with b = 1 (pick an orbit that ex-
plores r ≈ 1 and is not too close to circular). Using orbit integration in galpy, add an
instantaneous velocity offset when the orbit is at its pericenter radius. Investigate what hap-
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pens to the pericenter radius of the resulting orbit. Is it larger or smaller than the original
pericenter radius? It is useful to consider the special cases where (i) you only change the
radial velocity and (ii) you only change the tangential velocity (or equivalently the angular
momentum). Does the answer change if you consider different orbits?

(b) Argue why the behavior you saw in part (a) is true for any orbit in any spherical po-
tential. (Hint: consider the special cases and what happens to the effective potential). You
can illustrate your argument with the orbit(s) that you investigated in (a), but make it clear
why the behavior is general.

(c) What happens to the apocenter radius and the eccentricity in (a)? Investigate numeri-
cally and explain what is happening.

(d) Now consider the orbit of a comet that originates from the Oort cloud, at 20,000 AU and
has an orbit that brings it to 2 AU. The perturbations to the orbit near its pericenter from
the planets lead to changes in the energy that are equivalent to changing the inverse semi-
major axis by 10−4 AU−1. By considering a few different ways of distributing this energy
change into radial and tangential velocity kicks, determine how the pericenter and apocenter
distances of this comet change. Do you see what Scott claimed? Discuss.

Problem 3: The cored isothermal sphere and self-interacting dark matter models.

(a) Equation (6.71) for the density of an isothermal sphere has non-singular solutions that
can be found by specifying the boundary condition for a core: ρ(0) = ρ0 and dρ/dr = 0 at
r = 0. Demonstrate by writing Equation (6.71) in terms of y = ln ρ̃/ρ0 and x = r/r0 where
r20 = 9σ2/[4πGρ0] that cored solutions have the form ρ(r) = ρ0 f(r/r0) and give the equation
that determines f(x).

(b) Write a function that computes f(x) and use it to plot ρ/ρ0 as a function of r/r0 for the
cored isothermal sphere. Compare what you see to the singular isothermal sphere.

(c) An often preferred model for the dark matter density profile is the NFW profile. Using
an NFW profile with concentration 11.5 and a virial mass of 7× 1011M� (for ∆v = 200; this
is like the Milky Way’s dark matter halo), numerically compute the radial velocity dispersion
profile in km s−1 for β = 0 and β = 0.5 (implement the integrals yourself, don’t just use
galpy.df.jeans). Plot your solution on a logarithmic grid from r = 1 kpc to r = 300 kpc.

(d) The cored isothermal sphere describes the inner regions of dark matter halos in models
where dark matter particles interact strongly enough that they scatter off of each other and
thermalize in regions of high enough dark-matter density (through interactions that are anal-
ogous to non-gravitational interactions between baryons). This thermalization homogenizes
the velocity dispersion and this means that in these models, the outer dark matter profile
is given by the standard NFW form, while the inner profile is that of the cored isothermal
sphere. The boundary between these two regimes is at the radius where a dark matter
particle is expected to scatter once. The scattering rate per unit time per particle is given
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by

Γ(r) =
σ

m

4√
π
σr(r) ρ(r) , (1)

where σ/m is the self-interacting dark matter cross section per unit mass (note that this
is not the same σ as that of the isothermal sphere, but σ/m is the standard notation for
this cross section), σr(r) is the radial velocity dispersion, and ρ(r) the density profile. For
σ/m = 1 cm2 g

−1
, a halo age of 10 Gyr, and the NFW halo and radial-velocity dispersion

profiles from (c), determine the radius r1 at which a particle in the NFW halo is expected
to scatter once, both for β = 0 and β = 0.5.

(e) Given the cored-isothermal sphere profile that you found in (b), find the cored-isothermal
profile (that is, the parameters ρ0 and r0) such that the cored-isothermal profile’s density
and enclosed mass matches that of the NFW profile from (c) and (d) at r1 (for the β = 0 case
for the NFW’s velocity dispersion). Plot the entire density profile of the cored-isothermal
profile out to r1 and the NFW profile outside of that from 1 kpc to 300 kpc. This is a simple
model for the Milky Way’s dark matter halo if dark matter has strong self interactions!
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