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Today: methods for assessing 
uncertainty in model fits

• Bayesian: sampling the posterior probability 
distribution, in particular, Markov Chain Monte 
Carlo methods 

• Frequentist: non-parametric methods: bootstrap, 
jackknife



Hogg, Bovy, & Lang (2010)



Fitting a line
• Straight line model has two parameters: slope m and 

intercept b 

• Likelihood, single point: p(yi|m,b,xi,σy,i) = N(yi|mxi+b,σ2
y,i) 

• Independent data points:  
p({y}|m,b,{x},{σy}) =  
p(y0|m,b,x0,σy,0) x p(y1|m,b,x1,σy,1)x…   x p(yN-1|m,b,xN-1,σy,N-1) 

• Posterior:  
p(m,b|{y},m,b,{x},{σy} ~ p({y}|m,b,{x},{σy}) x p(m,b) 

• Two parameters, so easy to optimize, grid-evaluate,…





Mixture model for outliers



• Model outliers using a mixture model: each data 
point has some probability qi to be actually drawn 
from the line, and probability (1-qi) to be drawn 
from a background model pbg(yi|xi,σy,i,…) 

• Simple background model:  
pbg(yi|xi,σy,i,…) = N(y|Yb,Vb+σ2y,i)

Mixture model for outliers



Mixture model for outliers

Hogg, Bovy, & Lang (2010)

Posterior requires prior on qi, introduces new parameter Pb



Mixture model for outliers
• Parameters of the model are now: m, b, Yb, Vb, Pb, q0, q1, 

…, qN-1 —>  N+5 parameters! 

• Efficiently exploring the posterior PDF becomes much 
harder; grid-evaluation impossible! 

• Note: we can analytically marginalize over qi



Sampling methods for the 
posterior PDF

• Most things that want to do with the PDF p(θ) involve integrals over the 
PDF: 

• Mean = ∫dθ p(θ) θ 

• Median: ∫median dθ p(θ) = ∫median
 dθ p(θ) 

• Variance = ∫dθ p(θ) θ2 - [∫dθ p(θ) θ]2 

• Quantiles: ∫quantile θ dθ p(θ) = quantile x ∫dθ p(θ) = quantile 

• Marginalization: p(θ) = ∫dη p(θ,η) 

• None of these care about the overall normalization of p(θ) [set ∫dθ p(θ) = 1]  

• Therefore, can use Monte Carlo integration techniques



Monte Carlo Integration
• Multi-dimensional integral  
 
 
 
where  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• No need to use uniform sampling, can just as easily 
do 
 
 
 
where  
 
 
 
θi are points sampled from q(θ) 

• If you choose q(θ) that closely follows f(θ), f(θi)/
q(θi)~1 and integral will quickly converge
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Z

d✓ f(✓) =

Z
d✓ q(✓)

f(✓)

q(✓)

= Vq ⇥
1

N

X

i

f(✓i)

q(✓i)

Vq =

Z
d✓ q(✓)



• Back to our integrals of the form ∫dθ p(θ) f(θ) 

• Using Monte-Carlo integration  
 
 
 
if θi sampled from p(θ), because Vp = ∫dθ p(θ) = 1 

• So all integrals of the posterior PDF can be 
performed using Monte Carlo integration, if we can 
efficiently sample p(θ)!

Monte Carlo Integration 
for probability distributions
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Importance sampling
• Sampling p(θ) is hard! So let’s sample a different distribution that is 

easy to sample q(θ) and use 
 

• The p(θi)/q(θi) are known as the importance weights 

• They re-weight the importance of each sample 

• Works well if q(θ) is close to p(θ), otherwise introduces large variance: 
think about what happens when q(θ) is small when p(θ) is large!
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Importance sampling

Mackay (2003)



Importance sampling
• Useful in some contexts:  
 
For example, somebody gave you samples from a posterior PDF 
with a prior that you don’t like —>  
 
You want  

• But you have samples θi from   

• Can do  
 
 
 
which should be fine as long as the prior doesn’t change too much
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Rejection sampling
• Sampling from p(b) == uniformly sampling area under 

p(b)

Numerical recipes (2007)



• Have q(x) such that c x q(x) always > p(x) 

• q(x) easy to sample (e.g., uniform or Gaussian) 

• Sample v from q(x) and u from Uniform(0,1)  
if u < p(v)/q(v)/c: return v 
else: try again

Rejection sampling

Mackay (2003)



• Works well in 1D, but difficult for multi-dimensional 
distributions, because volume under q(x) and that 
under p(x) quickly becomes very different 

• Even in 1D it can be difficult to find a q(x) 

• Importance sampling and rejection sampling useful 
because each sample is independent

Rejection sampling



Markov chains
• A Markov chain is a chain of randomly produced 

samples (states) for which the transition probability 
to the next state only depends on the current state, 
not the previous history —> memoryless 

• Markov chain defined by transition probability 
T(x’;x) which gives the probability of going to x’ 
when you’re currently at x 

• Markov Chain Monte Carlo methods construct 
T(x’;x) such that the chain samples a given p(x)



Metropolis-Hastings
• Want to sample p(x) 

• Proposal distribution q(x’;x) [this is not the T(x’;x) from 
previous slide!]; For example, Gaussian centered on x 
with some width 

• Algorithm: you’re at xi 
    1. Draw from xt from q(xt;xi) 
    2. Compute a = [p(xt) q(xi;xt)] / [p(xi) q(xt;xi)] 
    3. If a > 1: accept xt; else: accept xt with      
                                               probability a  
    4. If accepted: xi+1 = xt; else: xi+1 = xi —> always add!



Metropolis-Hastings

Mackay (2003)



• Algorithm: you’re at xi 
    1. Draw from xt from q(xt;xi) 
    2. Compute a = [p(xt) q(xi;xt)] / [p(xi) q(xt;xi)] 
                           = p(xt) / p(xi)  
    3. If a > 1: accept xt; else: accept xt with      
                                               probability a 
    4. If accepted: xi+1 = xt; else: xi+1 = xi 

• So, if proposed state has higher probability, always accept 

• But can go to lower probability region with some 
probability —> not an optimizer!

Metropolis-Hastings: special case 
of a symmetric proposal distribution



Metropolis-Hastings in 
practice

• Need to choose q(x’;x) —> often a Gaussian centered on x, with 
some width, in higher dimensions typically spherical Gaussian 

• Width is adjustable parameter: should be O(width of p[x]) 
 
Set it too large: jump to regions with low p(x) —> reject  
 
Set it too small: jump to regions with very similar p(x) —> Transition 
probability ~1 —> accept most, but don’t explore 

• Typically needs a lot of adjusting; acceptance fraction = (# of times 
xt =/= xi) / (total # of steps) 

• Theoretical work has shown that optimal acceptance fraction in 1D 
= 50%, in higher-D 23% (Roberts & Gelman 1997)



Metropolis-Hastings

Mackay (2003)

Need on order of 
  
>(L/width)2 steps  
 
to explore the PDF 
(random walk)



Markov Chain Monte Carlo 
generalities

• When and why do MCMC algorithms work? Important to 
understand to not get tripped up in practice! 

• Markov Chain characterized by transition probability T(x’;x) 
[for MH, this is the algorithm given] 

• Probability distribution qi+1(x’) of value x’ starting from 
probability distribution for qi(x): 
 
qi+1(x’) = ∫ dx T(x’;x) qi(x) 

• So T(x’;x) transforms one probability distribution into 
another



MCMC generalities
• For a Markov Chain algorithm to explore the 

desired distribution p(x) two requirements: 

• p(x) should be an invariant distribution of the 
Markov Chain:  
 
p(x’) = ∫ dx T(x’;x) p(x) 

• Chain must be ergodic: qi+1(x) —> p(x) for i —> ∞ 
(chain shouldn’t be periodic, …)



Example: sampling a 
uniform distribution

Mackay (2003)



Example: sampling a 
uniform distribution

Mackay (2003)



Detailed balance
• Invariance of distribution can be ensured by detailed balance: 

• T(x’;x)p(x) = T(x;x’)p(x’) for all x, x’ 

• Means that chain is reversible: just as likely to go from x—>x’ as to 
go from x’—>x 

• Invariance then satisfied because: 
 
p(x’) = ∫ dx T(x’;x) p(x)  
        = ∫ dx T(x;x’) p(x’) [detailed balance] 
        = p(x’) ∫ dx T(x;x’) 
        = p(x’) 

• Sufficient, but not necessary



Metropolis-Hastings

• Pretty easy to show that MH satisfies detailed 
balance, but left as exercise 

• How to ensure that the chain is ergodic? One 
simple way is to make sure that T(x’;x) > 0 for all x’ 
with non-zero p(x’) [non-zero prior]



Gibbs sampling
• In multiple dimensions, say p(x,y) 

• Sample: Starting at (xi,yi)  
    1. xi+1 from p(x|yi)  
    2. yi+1 from p(y|xi+1)  
    3. New (xi+1,yi+1) 

• Useful when: 

• Each conditional distribution is simple (or some of them) 

• Want to sample different dimensions in different ways (MH 
with different step sizes, more advanced sampling for some 
parameters)



Gibbs sampling

Mackay (2003)



Metropolis-Hastings and Gibbs sampling are 
nice, but typically require some adjustable 
step size that can lead to an unacceptable 

acceptance fraction



Ensemble samplers
• So far have considered single sample xi that gets 

updated 

• Ensemble sampler have a state consisting of many 
samples {x}i that get updated by Markovian transitions 

• Will focus on most popular one: affine-invariant 
ensemble sampler of Goodman & Weare (2009; aka, 
emcee) 

• Variations have different points in the ensemble at 
different temperatures, …



Affine-invariant sampler 
(emcee)

Goodman & Weare (2009)



Affine-invariant sampler 
(emcee)

Goodman & Weare (2009)



• Each x in {x}i is called a walker 

• Detailed algorithm: Starting with ensemble {x}i  
    1. Loop through each walker k: xk 
    2. Draw a walker xl from the set of walkers w/o k 
    3. Draw z from g(z) 
    4. Propose new xk,i+1 = xk + z(xk - xl)  
    5. Compute q = zN-1 x p(xk,i+1)/p(xk) 
    6. Draw uniform u from [0,1]  
    7. If q >= u: accept xk,i+1; else: keep xk,i 

• 3. is called the stretch move; need to specify g(z) 

• If g(z) satisfies g(1/z) = z g(z), the above algorithm satisfies detailed 
balance;    g(z) = 1/√z for z in [1/a,a], a free parameter

Affine-invariant sampler 
(emcee)



Affine-invariant sampler 
(emcee)

Goodman & Weare (2009)



• Each walker needs to be updated in series in the 
previous algorithm —> can take a long time 

• Naive parallelization (update all simultaneously 
using their position in iteration i) fails to satisfy 
detailed balance 

• Can split walkers into set of two, update all walkers 
from one set simultaneously by only allowing 
moves wrt walkers in the other set —> satisfies 
detailed balance

Affine-invariant sampler 
(emcee): parallel version



• Algorithm needs value for a, but just scaling that can be 
left the same for all problems (works well) 

• Need to watch out for non-ergodic chains! 

• If # of walkers < dimension of space, cannot sample 
entire space! 

• Should use # of walkers >> dimension of space to 
avoid getting stuck near subspace 

• Like Metropolis-Hastings, possible that acceptance 
fraction is very low

Affine-invariant sampler 
(emcee)



emcee demo



MCMC overview
• Metropolis-Hastings: simple to implement, need to pick 

proposal distribution, need to monitor acceptance fraction 

• Gibbs sampling: Great when (some) conditional 
probabilities are simple 

• emcee: Insensitive to step size, so good go-to methods 
that don’t require much supervision; good python 
implementation of ensemble sampler emcee (http://
dan.iel.fm/emcee) 

• All of these have random walk behavior: takes a long time 
to explore the PDF

http://dan.iel.fm/emcee


Hamiltonian Monte Carlo
• Method to avoid random walk behavior by 

proposing new samples far from current point 

• Does this by pretending that -ln p(xi) is a potential 
energy U(xi) and adding N new momentum 
variables pi with kinetic energy K(pi) = 𝛴i pi2/[2mi] 

• Then 

• and
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• Now propose new points in two steps: 
 
Currently at (xi,pi):  
1. Sample pa from exp(-pi2/[2mi]) —> Gaussian = simple 
2. Sample new (xi+1,pi+1) by 
    (a) simulate Hamiltonian dynamics  
          (xi,pa) —> (xp,pp) [leapfrog] 
    (b) MH accept/reject (xp,pp) based on ratio  
          exp[-U(xp)-pp2/{2m}] / exp[-U(xi)-pa2/{2m}] 

• If energy conserved, ratio in (b) == 1 —> always accept 

• Step 2. is not a random walk and one can move to a very 
different point of parameter space

Hamiltonian Monte Carlo



Hamiltonian Monte Carlo in 
practice

• To simulate dynamics we need the force: the derivative of 
the likelihood —> often difficult to compute by hand and 
numerical derivatives are unstable 

• Need to set two parameters related to integration: 

• Stepsize ε 

• Number of steps L 

• Want ε to be as large as possible and still conserve 
energy; L such that one moves to a very different 
part of the PDF but no further



Derivatives for Hamiltonian 
Monte Carlo

• Derivatives are in principle easy: can use chain rule: 
 

• All computer functions are in the end combinations of primitives 
+,-,x,/ [and at a slightly higher level exp, sin, cos, …] 

• Use chain rule to break down derivatives until you hit a primitive 
—> backpropagation / automatic differentiation 

• 2018: many libraries available that implement this (autograd, 
pytorch, theano, tensorflow, …) 
 

df(g(x))

dx
= f

0(g[x]) g0(x)



Autograd demo



Hamiltonian Monte Carlo: 
setting the number of steps

• Big issue in HMC that trajectory turns back onto itself 

• No U-Turn Sampler (Hoffman & Gelman 2011): 
automatic way to detect whether trajectory is bending 
back onto itself and stop leapfrog integration



stan
• Modeling framework with NUTS HMC sampler at its core 

• Specify model in terms of the modeling language, stan then 
takes care of everything else 

• Supports a very large range of possible models, all through the 
magic of automatic differentiation 

• Can significantly speed-up MCMC sampling of many problems, 
especially ones with many parameters 

• C++ library with wrappers in R, Python, cmdline, … 

• Similar more Pythonic package: pymc3



stan demo



MCMC overview
• Metropolis-Hastings: simple to implement, need to pick 

proposal distribution, need to monitor acceptance fraction 

• Gibbs sampling: Great when (some) conditional probabilities 
are simple 

• emcee: Insensitive to step size, so good go-to methods that 
don’t require much supervision; good python implementation 
of ensemble sampler emcee (http://dan.iel.fm/emcee) 

• Hamiltonian Monte Carlo: far more efficient exploration of 
parameter space, viable through multiple software packages 
today

http://dan.iel.fm/emcee


MCMC: burn-in
• All MCMC algorithms need to ‘burn in’: Takes some 

number of steps to reach the target distribution p(x) 

• Need to monitor convergence to p(x) somehow: 

• Can look at ln[p(x)] and how it evolves over time 
—> should start randomly oscillating around 
typical value 

• Can compute desired integrals (e.g., mean) and 
see when their value stops changing 

• Can run different chains and look at variance 
between those chains 

• Determine when your chain has burned-in, remove 
everything up to that point; samples are what follows



• Samples in Markov Chain are correlated, because each value 
depends on the previous value 

• This is okay when computing summaries of the PDF [e.g., ∫dθ 
p(θ) f(θ)] in that this does not introduce bias, but it does mean 
that the uncertainty in the summary does not decrease as 1/√N 

• Can compute the autocorrelation function of your samples: A(𝜏) 
= <xi xi+𝜏> and determine typical value of 𝜏 for autocorrelation 
to become zero —> auto-correlation time 𝜏 

• N/𝜏 ~ # of independent samples in your chain 

• Can discard non-independent samples; most summaries can 
be computed using very few independent samples (~12)

MCMC: auto-correlation time



Non-parametric ways to 
estimate uncertainties: 

Bootstrap and Jackknife



Non-parametric methods
• Bayesian inference requires good knowledge of model, 

data uncertainties, and everything else involved in going 
from the model —> data 

• Bootstrap and jackknife attempt to quantify uncertainty 
from the distribution of data itself 

• Bootstrap (not the web framework…): data {xi} sampled 
from some distribution p(x), estimate as  
 
p(x) ~ 1/N x 𝛴iδ(x-xi) 

• Sample new data sets from this estimate of p(x)



Bootstrap
• Suppose you want to know the standard deviation of a set 

of N data {xi} —> unbiased estimator 
 
σ2 = 1/[N-1]𝛴i [xi-<xi>]2  
 
What is its uncertainty? 

• Bootstrap: sample new data points from p(x) ~ 1/N x 𝛴iδ(x-
xi) —> sample N ‘new’ data points from the original set 
with replacement (i.e., can sample the same one twice) 

• Compute σ2 for each resampling —> distribution of these 
σ2 is the uncertainty distribution



Bootstrap

Ivezic et al. (2014)



Jackknife
• Rather than sampling with replacement, make N new data sets 

by leaving out 1 data point at a time 

• So {x1,x2,x3,…}, {x0,x2,x3,…}, {x0,x1,x3,…}, … 

• Compute estimator θ for each subsample, θ-i 

• Uncertainty in estimator:  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Robust against underestimating 
one’s errors and correlated errors
• Suppose you want to know the mean of a set of data that 

you think have errors of 2, but really have errors of 10 

• 100 data points: Would assign mean error 2/√100 = 0.2; 
but real error is 10/√100 = 1 

• Bootstrap: error=1



Problem set


