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Bayesian and 
frequentist inference



• We cannot directly measure/observe what we are 
interested in (think 𝛀, or “the formation of the Milky 
Way”) 

• Connection between models and data is often 
statistical, and data has noise 

• Need theory to express uncertain knowledge and to 
update it

Probability theory



• Great schism between two definitions of probability: 

• Frequentist: Long-run relative frequency of 
occurrence of an event in repeated experiments. 
E.g., P(heads) = 0.5 bc half of coin-tosses of ideal 
coin result in heads 

• Bayesian: Real-valued measure of the plausibility of 
a proposition, closely follows intuitive reasoning. 
E.g., P(it will rain in 10 minutes|cloudy) = 0.5.

Two definitions of “probability”



Likelihood
• The likelihood is a function both used in frequentist 

and Bayesian inference 

• Essentially encodes how the data are produced by 
the model (e.g., straight line, intrinsic flux) and 
observing procedure (e.g., noise) 

• Once model is fixed and observing procedure is 
known, no freedom 

• Many desirable properties



Likelihood
• Abstract: 
 
L = p(data | model,  
observing procedure,  
other necessary knowledge) 

• Example: Straight line fit 

• Given x: model —> ytrue = mx + b 

• yobs = ytrue + Gaussian-noise-with-variance-σ2 

• L = p(yobs | model, x, σ) = p(yobs | m, b, x, σ)  
   = p(yobs | ytrue = mx + b, σ)  
   = N(yobs | ytrue = mx + b, σ2) 

• Or -2 ln L = (yobs -[mx + b])2/σ2 =



Likelihood
• Abstract:  
 
L = p(data | model, observing procedure, other 
necessary knowledge) 

• Example: data = 11 photons, observed with dark noise 
equivalent to 1 photon 

• p(11 photons | model=9 photons, dark=1 photon)  
= Poisson(11 | mean = 9+1, variance = 9+1) 

• = 0.11373639611012128



• p(11 photons | model=x-1 photons, dark=1 photon)  



• For multiple data points: 

• Suppose I observe the source 10 times, get {4, 11,  8,  7, 
10, 15, 13, 11, 10, 13} 

• Assume average model flux = 9 photons 

• L = Poi(4|10)xPoi(11|10)xPoi(8|10)xPoi(7|10)xPoi(10|
10)xPoi(15|10)xPoi(13|10)xPoi(11|10)xPoi(10|10)xPoi(13|10) 

• = 7.1695477633905203e-12 

• Typically use ln L!!

Likelihood



All individual likelihoods Poi(obs|x)



Product



Likelihood
• Assuming multiple measurements are independent, multiply 

together individual likelihoods:  
 
L = p(data1|model) x p(data2|model) x … x p(dataN|model) 

• L completely determined by model and observing: 

• Photometry: intrinsic flux + dark noise + read noise —> Poisson / 
Gaussian for large counts (more than ~100) 

• Measurements of constant A with Gaussian noise s —> 
Gaussian with mean=A, noise=s 

• Model: Velocity distribution with mean A and velocity dispersion 
s —> Gaussian with mean=A, noise=s



Maximum likelihood 
Estimator (MLE)

• Fit parameters by finding the maximum of the 
likelihood 

• Likelihood = probability of data given model —> 
makes sense to maximize this!



Sum ln L



Sum ln L



Sum ln L, 100 observations



Sum ln L, 100 observations



Desirable properties of 
maximum likelihood

• Units: 1/data —> maximum doesn’t change when 
changing parametrization of model! (functional 
invariance) 

• Consistent: approaches true value with probability 1 
when N goes to infinity (~asymptotically unbiased) 

• Asymptotically normal: Estimator becomes true value 
+/- Gaussian error 

• Asymptotically efficient: Saturates Cramer-Rao bound 
when data goes to infinity (cannot get better estimate)



Example: Gaussian
• Have N measurements xi with error σ, model = m 

•   

•   

•   

•   

• Unbiased!
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Mean = -0.0037968773546516459



Example: Gaussian variance
• Have N measurements xi with mean m, draw from Gaussian with variance V 

• Mean is the same!
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Mean=0.99903451943557275

Bessell correction: only N-1 constraints, 
because 1 used for mean



Confidence intervals
• Without Bayes, the likelihood on its own is not a probability 

distribution for the estimator 

• Can derive confidence intervals: 95-percent confidence 
interval contains the true value 95% of the time 

• Typically need to simulate data to figure this out; analytic 
results for some distributions 

• Asymptotic normality: when N becomes large, difference 
between estimate and true value is Gaussian with variance 
 
Vij = -1/(d2 ln L / d model1 d model2) evaluated at MLE



Example: Gaussian
• Have N measurements xi with error σ, model = m
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Bayesian probability theory
• Bayesian probability theory follows from three axioms: 

• Degrees of plausibility are represented by real 
numbers 

• Qualitative consistency with common sense (e.g., 
p(A|C)↑then p(not A|C)↓; small increases in 
plausibility lead to small increases in the real 
number representing it) 

• Consistency (internal, use of all information, 
indifference)



• Three axioms lead to probability calculus similar to 
deductive logic (see Chapters 1 & 2 of Jaynes’ 
Probability Theory: The Logic of Science) 

• P(A∪B|C) = P(A|C)+P(B|C)-P(A∩B|C) 

• P(A∩B|C) = P(A|B∩C) x P(B|C) 

• P(A|B∩C) = P(B|A∩C)xP(A|C)/P(B|C)

Bayesian probability theory



Inference using Bayes’s 
theorem

• Bayesian probability theory allows you to compute p(model | data) 

• Bayes’s theorem:  
 
                              p(data | model) x p(model) 
p(model | data) = ————————————-  
                                          p(data)  
or 
 
                              Likelihood x Prior 
          Posterior  = ———————— 
                                     Evidence 

• Posterior probability distribution can be directly interpreted as 
probability of the model (parameters)



Posterior probabilities
• The fact that p(model|data) is a probability distribution has advantages 

and disadvantages: 

• Bad: p(model|data) is not functionally independent: changing the 
parametrization of the model will change p(model|data) —> maximum-
a-posteriori estimate, mean, etc. depend on parametrization 

• Good: Can directly derive credibility intervals from p(model|data) 

• Good: Can marginalize over nuisance parameters: p(model|data) =    
\int d nuisance p(model,nuisance|data) 

• Good: Can carry full p(model|data) forward to ‘new data’ 
p(model | new data,data) = p(new data | model) p(model|data) / p(new 
data) 

• All good things come at the cost of introducing the prior p(model), which 
many people find hard to stomach…



A word on priors
• Any application of Bayes’s theorem requires priors, often considered a 

disadvantage 

• As the name implies, these typically encode one’s prior knowledge of the 
model (parameters) under investigation 

• Long literature on “uninformative priors”: rules of thumb: 

• Unitless parameter: flat prior over reasonable range 

• Parameter with units: flat prior on ln(parameter); puts equal weight on 
different orders of magnitude 

• However, if you know the order of magnitude, a flat linear prior might be 
more appropriate 

• If prior matters much, then your data is not that informative! 

• Use freedom in specifying the prior to your advantage (hierarchical modeling)



“Uninformative” priors
• One is typically expected to use “non-informative priors”: 

priors that do not strongly constrain the posterior 

• Note: choosing the model is often a very strong prior! 

• For example: unitless parameter A: 1, 1.5, 2.5, 3.3, … no 
reason to prefer any —> p(A) = constant (improper!) 

• Scale parameter V (has units): prior shouldn’t depend on 
units —> should be invariant under re-scaling  
 
p(V) dV = pW(W=sV) d(sV) = p(W=sV) d(sV) —>  
p(V) ~ 1 /V



Example: Gaussian variance
• Have N measurements xi with mean m, draw from Gaussian with variance V 

• Prior on the mean: constant, prior on the variance ~ 1/ variance = 1/V 

• Mean is the same as MLE
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• Biased! (Unbiased has 1/[N-1])



So far,  
uniform for unitless parameters ,  
1/param for unit-full parameters  

has served me pretty well…



Advanced approaches to 
determining priors

• Jeffreys prior:  
prior ~ square-root (determinant Fisher Information)  
 
Fisher information = E[-(d2 ln L / d model2)] 

• Invariant under change of variables (good!)



• Conjugate priors: For computational ease, useful to get p(model|
data) that has the same form as p(model) 

• So want 
 
p(model|data) ~ p(data|model) p(model) 
 
to have the same form as p(model) —> p(model) set by likelihood 

• For example, mean of a Gaussian: conjugate prior on mean is 
Gaussian 

• Useful if you want an informative prior, but want to be able to, e.g., 
compute the maximum of the posterior probability analytically

Advanced approaches to 
determining priors



• Maximum entropy: If you want as uninformative 
prior as possible, but have some constraints 
(information) 

• Maximize entropy= - Sumi pi ln[pi] (or integral 
generalization) under certain constraints (Lagrange 
multipliers and all that)

Advanced approaches to 
determining priors



Okay, you have a prior and the likelihood, now 
what do you do with the posterior probability 

distribution?



What to do with PDFs
• Bayes’s theorem:  
 
                              p(data | model) x p(model) 
p(model | data) = ————————————- 
                                          p(data) 

• Some people would claim that you need to publish p(model | data) 
somehow 

• Practically, need summaries 

• Single-point summaries: MAP (maximum-a-posteriori value), mean, 
median, …  

• Width: variance? Some range of quantiles, like 68% around single-point 

• Latter: Start at (max,mean,median,…) and integrate outward at constant 
p until you have 68% of the area; works in multi-D 

• Multi-modal PDFs: Sorry! Do something sensible.  



Bayesian inference recap
• Likelihood: p(data|model), comes from underlying 

(physical/empirical) model + observing procedure (noise, 
PSF, …) 

• Pick reasonable prior: uninformative or based on 
previous results 

• compute posterior PDF ~ likelihood x prior: Can use grid 
for low-dim, sampling methods for higher dim (next week) 

• Compute summaries of PDF to list in tables, abstracts, 
press releases



Bayesians vs. frequentists
• Like most of such battles, there is very little actually at stake; at high 

SNR, all good (unbiased, efficient) methods return the same answer 

• Bayes’s theorem proven to be optimal way to do inference; so will 
get best results by using it! 

• Likelihood-based frequentist methods often very similar to 
corresponding Bayesian method 

• Bayesian inference has more freedom than frequentist inference: 
can open up the prior to modeling (empirical Bayes, hierarchical 
modeling) 

• Difficult to do marginalization in frequentist approach —> difficult to 
integrate over lack of knowledge


